Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0301664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985719

RESUMO

Influenza viruses constitute a major threat to human health globally. The viral surface glycoprotein hemagglutinin (HA) is the immunodominant antigen, contains the site for binding to the cellular receptor (RBS), and it is the major target of neutralizing antibody responses post-infection. We developed llama-derived single chain antibody fragments (VHHs) specific for type A influenza virus. Four VHHs were identified and further characterized. VHH D81 bound residues in the proximity of the C-terminal region of HA1 of H1 and H5 subtypes, and showed weak neutralizing activity, whereas VHH B33 bound residues in the proximity of the N-terminal region of the HA's stem domain (HA2) of H1, H5, and H9 subtypes, and showed no neutralizing activity. Of most relevance, VHHs E13 and G41 recognized highly conserved conformational epitopes on the H1 HA's globular domain (HA1) and showed high virus neutralizing activity (ranging between 0.94 to 0.01µM), when tested against several human H1N1 isolates. Additionally, E13 displayed abrogated virus replication of a panel of H1N1 strains spanning over 80 years of antigenic drift and isolated from human, avian, and swine origin. Interestingly, E13 conferred protection in vivo at a dose as low as 0.05 mg/kg. Mice treated with E13 intranasally resulted in undetectable virus challenge loads in the lungs at day 4 post-challenge. The transfer of sterilizing pan-H1 immunity, by a dose in the range of micrograms given intranasally, is of major significance for a monomeric VHH and supports the further development of E13 as an immunotherapeutic agent for the mitigation of influenza infections.


Assuntos
Anticorpos Neutralizantes , Camelídeos Americanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , Anticorpos de Domínio Único , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos Neutralizantes/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Camelídeos Americanos/imunologia , Anticorpos Antivirais/imunologia , Feminino , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Epitopos/imunologia , Cães , Camundongos Endogâmicos BALB C
2.
Neurotoxicol Teratol ; 52(Pt A): 1-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26381448

RESUMO

Most pyrethroid (PYR) insecticides may be classified either as type-I compounds, which produce whole body tremors and hyperthermia, or type-II compounds, which produce salivation, choreoathetosis, and hypothermia (i.e., producing T and CS neurobehavioral syndromes, respectively). This classification is based on clinical observations in adult rats and mice after intracerebroventricular or intravascular administration of highly effective acute (bolus) doses. PYR neurotoxicity in infant animals is not characterized as much as in adult animals. Endpoints informing on vital determinants of mammal's maturation, such as body temperature may help recognizing age-related differences in susceptibility to PYRs. In this work, body temperature (Tb) was monitored at 30-min intervals after acute oral exposure to T-syndrome PYR bifenthrin (BIF), CS-syndrome PYR cypermethrin (CYPM), and a BIF­CYPM mixture in weanling rats by using a subcutaneous temperature monitoring system. In both single-compound assays, a time- and dose-related decline of Tb was the most evident impact on thermoregulation observed starting at ~2­3 h after dosing.Moreover, 15­18 mg/kg BIF induced a mild increase in Tb before the hypothermic action was apparent. The lowest effective dose for temperature perturbation was 15mg/kg for BIF and 10mg/kg for CYPM, and moderate neurobehavioral alterations were evident at 12 and 10mg/kg, respectively. When low effective doses of BIF and CYPM were co-administered mild behavioral effects and a transient increase in Tb (p=0.02) were observed at 1­2 h, and no Tb decline was apparent afterwards compared to control animals. Noteworthy, the hypothermic action of BIF in infant rats was quite different from the hyperthermia consistently reported in studies using mature animals. Our results suggest that body temperature monitoring may be useful as a complementary assessment to reveal qualitative age-specific pesticide effects in rats.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Inseticidas/toxicidade , Piretrinas/toxicidade , Administração Oral , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Inseticidas/administração & dosagem , Masculino , Piretrinas/administração & dosagem , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA