Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(9)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906722

RESUMO

This research focuses on investigating how physical and mechanical properties of polypropylene (PP) recycled material are modified when ultrasonic micro injection molding (UMIM) technology is used to produce material specimens. Experimental characterization by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, and rheology tests show that the fabricated PP samples were able to withstand up to five times recycled processing before some signs of mechanical and physical properties degradation are observed. Surprisingly, uniaxial extension tests show an increase of 3.07%, 10.97% and 27.33% for Young's modulus, yield stress and ultimate stress values, respectively, and a slight reduction of 1.29% for the samples elongation at break when compared to the experimental data collected from virgin material samples. The improvement of these mechanical properties in the recycled samples suggests that ultrasonic microinjection produces a mechano-chemical material change.

2.
Polymers (Basel) ; 11(10)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627370

RESUMO

This article focuses on evaluating the influence that the addition of carbonyl iron micro-particles (CIPs) and its alignment have on the mechanical and rheological properties for magnetorheological elastomers (MREs) fabricated using polydimethylsiloxane (PDMS) elastomer, and 24 wt % of silicone oil (SO). A solenoid device was designed and built to fabricate the corresponding composite magnetorheological material and to perform uniaxial cyclic tests under uniform magnetic flux density. Furthermore, a constitutive material model that considers both elastic and magnetic effects was introduced to predict stress-softening and permanent set effects experienced by the MRE samples during cyclic loading tests. Moreover, experimental characterizations via Fourier transform infrared (FTIR), X-ray diffraction (XRD), tensile mechanical testing, and rheological tests were performed on the produced MRE samples in order to assess mechanical and rheological material properties such as mechanical strength, material stiffness, Mullins and permanent set effects, damping ratio, stiffness magnetorheological effect (SMR), and relative magnetorheological storage and loss moduli effects. Experimental results and theoretical predictions confirmed that for a CIPs concentration of 70 wt %, the material samples exhibit the highest shear modulus, stress-softening effects, and engineering stress values when the samples are subject to a maximum stretch value of 1.64 and a uniform magnetic flux density of 52.2 mT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA