RESUMO
The Cu2+, Mn2+, and Fe3+ complexes of a 14 membered macrocycle were synthesized and their antioxidant capacities were evaluated against ABTS and DPPH radicals, with the objective of collecting insights into the biomimetic role of the central metal ions. The macrocycle, abbreviated as H2L14, is a derivative of EDTA cyclized with 1,4-diamine, and the moderately flexible macrocyclic frame permits the formation of [ML14·H2O] chelates with octahedral coordination geometries common among the metal ions. The metal complexes were characterized by electrospray-ionization mass spectrometry, Fourier transform infrared spectroscopy, and Raman and X-ray photoelectron spectroscopic methods, as well as thermogravimetric analysis; the octahedral coordination geometries with water coordination were optimized by DFT calculations. The antioxidant assays showed that [FeL14·H2O]+ was able to scavenge synthetic radicals with moderate capacity, whereas the other metal chelates did not show significant activity. The Raman spectrum of DPPH in solution suggests that interaction was operative between the Fe3+ chelate and the radical so as to cause scavenging capability. The nature of the central metal ions is a controlling factor for antioxidant capacity, as every metal chelate carries the same coordination geometry.
Assuntos
Antioxidantes/síntese química , Complexos de Coordenação/síntese química , Ácido Edético/química , Compostos Macrocíclicos/síntese química , Antioxidantes/química , Complexos de Coordenação/química , Cobre/química , Teoria da Densidade Funcional , Ferro/química , Compostos Macrocíclicos/química , Manganês/química , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , TermogravimetriaRESUMO
With the objective of studying the conformational and macrocyclic effects of selected metal chelates on their peroxidase activities, Cu2+ and Fe3+ complexes were synthesized with a macrocyclic derivative of ethylenediaminetetraacetic acid and o-phenylenediamine (abbreviated as edtaodH2) and its new open-chain analogue (edtabzH2). The Fe3+ complex of edtaodH2 has a peroxidase-like activity, whereas the complex of edtabzH2 does not. The X-ray study of the former shows the formation of a dimeric molecule {[Fe(edtaod)]2O} in which each metal with an octahedral coordination is overposed over the macrocyclic cavity, as a result of rigid macrocyclic frame, to form an Fe-O-Fe bridge; the exposure of the central metal to the environment facilitates the capture of oxygen to drive the biomimetic activity. The peroxidase-inactive Fe3+ complex consists of a mononuclear complex ion [Fe(edtabz)(H2O)]+, the metal ion of which is suited in a distorted pentagonal bipyramid to be protected from environmental oxygen. The copper(II) complexes, which have mononuclear structures with high thermodynamic stability compared with the iron(III) complexes, show no peroxidase activity. The steric effects play a fundamental role in the biomimetic activity.