Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biofactors ; 50(1): 89-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37470206

RESUMO

The synthesis rates of n-3 and n-6 polyunsaturated fatty acids (PUFAs) in rodents and humans are not agreed upon and depend on substrate availability independently of the capacity for synthesis. Therefore, we aimed to assess the activities of the enzymes for n-3 and n-6 PUFA synthesis pathways in liver, brain, testicle, kidney, heart, and lung, in relation to their protein concentration levels. Eight-week-old Balb/c mice (n = 8) were fed a standard chow diet (6.2% fat, 18.6% protein, and 44.2% carbohydrates) until 14 weeks of age, anesthetized with isoflurane and tissue samples were collected (previously perfused) and stored at -80°C. The protein concentration of the enzymes (Δ-6D, Δ-5D, Elovl2, and Elovl5) were assessed by ELISA kits; their activities were assayed using specific PUFA precursors and measuring the respective PUFA products as fatty acid methyl esters by gas chromatographic analysis. The liver had the highest capacity for PUFA biosynthesis, with limited activity in the brain, testicles, and kidney, while we failed to detect activity in the heart and lung. The protein concentration and activity of the enzymes were significantly correlated. Furthermore, Δ-6D, Δ-5D, and Elovl2 have a higher affinity for n-3 PUFA precursors compared to n-6 PUFA. The capacity for PUFA synthesis in mice mainly resides in the liver, with enzymes having preference for n-3 PUFAs.


Assuntos
Ácidos Graxos Dessaturases , Ácidos Graxos Ômega-3 , Humanos , Masculino , Animais , Camundongos , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Testículo/metabolismo , Fígado/metabolismo , Ácidos Graxos Insaturados/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Encéfalo/metabolismo , Rim/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(15): e2215275120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011214

RESUMO

The Gulf of Mexico is the largest offshore fossil fuel production basin in the United States. Decisions on expanding production in the region legally depend on assessments of the climate impact of new growth. Here, we collect airborne observations and combine them with previous surveys and inventories to estimate the climate impact of current field operations. We evaluate all major on-site greenhouse gas emissions, carbon dioxide (CO2) from combustion, and methane from losses and venting. Using these findings, we estimate the climate impact per unit of energy of produced oil and gas (the carbon intensity). We find high methane emissions (0.60 Tg/y [0.41 to 0.81, 95% confidence interval]) exceeding inventories. This elevates the average CI of the basin to 5.3 g CO2e/MJ [4.1 to 6.7] (100-y horizon) over twice the inventories. The CI across the Gulf varies, with deep water production exhibiting a low CI dominated by combustion emissions (1.1 g CO2e/MJ), while shallow federal and state waters exhibit an extraordinarily high CI (16 and 43 g CO2e/MJ) primarily driven by methane emissions from central hub facilities (intermediaries for gathering and processing). This shows that production in shallow waters, as currently operated, has outsized climate impact. To mitigate these climate impacts, methane emissions in shallow waters must be addressed through efficient flaring instead of venting and repair, refurbishment, or abandonment of poorly maintained infrastructure. We demonstrate an approach to evaluate the CI of fossil fuel production using observations, considering all direct production emissions while allocating to all fossil products.

3.
Environ Sci Technol ; 54(8): 5112-5120, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32281379

RESUMO

Methane (CH4) emissions from oil and gas activities are large and poorly quantified, with onshore studies showing systematic inventory underestimates. We present aircraft measurements of CH4 emissions from offshore oil and gas platforms collected over the U.S. Gulf of Mexico in January 2018. Flights sampled individual facilities as well as regions of 5-70 facilities. We combine facility-level samples, production data, and inventory estimates to generate an aerial measurement-based inventory of CH4 emissions for the U.S. Gulf of Mexico. We compare our inventory and the Environmental Protection Agency Greenhouse Gas Inventory (GHGI) with regional airborne estimates. The new inventory and regional airborne estimates are consistent with the GHGI in deep water but appear higher for shallow water. For the full U.S. Gulf of Mexico our inventory estimates total emissions of 0.53 Tg CH4/yr [0.40-0.71 Tg CH4/yr, 95% CI] and corresponds to a loss rate of 2.9% [2.2-3.8%] of natural gas production. Our estimate is a factor of 2 higher than the GHGI updated with 2018 platform counts. We attribute this disagreement to incomplete platform counts and emission factors that both underestimate emissions for shallow water platforms and do not account for disproportionately high emissions from large shallow water facilities.


Assuntos
Poluentes Atmosféricos/análise , Metano/análise , Golfo do México , Gás Natural/análise , Estados Unidos , United States Environmental Protection Agency
4.
Science ; 337(6098): 1075-8, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22936773

RESUMO

The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.


Assuntos
Atmosfera/química , Material Particulado/química , Potássio/química , Chuva/química , Árvores/química , Tamanho da Partícula , Sais/química , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA