Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 363: 114352, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36813223

RESUMO

Decreasing neurotrophic support and impaired mitochondrial bioenergetics are key mechanisms for long-term neurodegeneration and cognitive decline after traumatic brain injury (TBI). We hypothesize that preconditioning with lower and higher volumes of physical exercise upregulates the CREB-BDNF axis and bioenergetic capability, which might serve as neural reserves against cognitive impairment after severe TBI. Using a running wheel mounted in the home cage, mice were engaged in lower (LV, 48 h free access, and 48 h locked) and higher (HV, daily free access) exercise volumes for thirty days. Subsequently, LV and HV mice remained for additional thirty days in the home cage with the running wheel locked and were euthanized. The sedentary group had the running wheel always locked. For the same type of exercise stimulus in a given time, daily workout presents higher volume than alternate days workout. The total distance ran in the wheel was the reference parameter to confirm distinct exercise volumes. On average, LV exercise ran 27.522 m and HV exercise ran 52.076 m. Primarily, we investigate whether LV and HV protocols increase neurotrophic and bioenergetic support in the hippocampus thirty days after exercise ceased. Regardless of volume, exercise increased hippocampal pCREBSer133-CREB-proBDNF-BDNF signaling and mitochondrial coupling efficiency, excess capacity, and leak control, that may compose the neurobiological basis for neural reserves. Further, we challenge these neural reserves against secondary memory deficits triggered by a severe TBI. After thirty days of exercise LV and HV, and sedentary (SED) mice were submitted to the CCI model. Mice remained for additional thirty days in the home cage with the running wheel locked. The mortality after severe TBI was approximately 20% in LV and HV, while in the SED was 40%. Also, LV and HV exercise sustained hippocampal pCREBSer133-CREB-proBDNF-BDNF signaling, mitochondrial coupling efficiency, excess capacity, and leak control for thirty days after severe TBI. Corroborating these benefits, the mitochondrial H2O2 production linked to complexes I and II was attenuated by exercise regardless of the volume. These adaptations attenuated spatial learning and memory deficits caused by TBI. In summary, preconditioning with LV and HV exercise builds up long-lasting CREB-BDNF and bioenergetic neural reserves that preserve memory fitness after severe TBI.


Assuntos
Lesões Encefálicas Traumáticas , Reserva Cognitiva , Condicionamento Físico Animal , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Peróxido de Hidrogênio , Condicionamento Físico Animal/fisiologia , Hipocampo/metabolismo , Transtornos da Memória/etiologia , Lesões Encefálicas Traumáticas/complicações
2.
J Neurochem ; 161(2): 173-186, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35157328

RESUMO

Severe traumatic brain injury (TBI) is associated with high rates of mortality and long-term disability linked to neurochemical abnormalities. Although purine derivatives play important roles in TBI pathogenesis in preclinical models, little is known about potential changes in purine levels and their implications in human TBI. We assessed cerebrospinal fluid (CSF) levels of purines in severe TBI patients as potential biomarkers that predict mortality and long-term dysfunction. This was a cross-sectional study performed in 17 severe TBI patients (Glasgow Coma Scale <8) and 51 controls. Two to 4 h after admission to ICU, patients were submitted to ventricular drainage and CSF collection for quantification of adenine and guanine purine derivatives by HPLC. TBI patients' survival was followed up to 3 days from admission. A neurofunctional assessment was performed through the modified Rankin Scale (mRS) 2 years after ICU admission. Purine levels were compared between control and TBI patients, and between surviving and non-surviving patients. Relative to controls, TBI patients presented increased CSF levels of GDP, guanosine, adenosine, inosine, hypoxanthine, and xanthine. Further, GTP, GDP, IMP, and xanthine levels were different between surviving and non-surviving patients. Among the purines, guanosine was associated with improved mRS (p = 0.042; r = -0.506). Remarkably, GTP displayed predictive value (AUC = 0.841, p = 0.024) for discriminating survival versus non-survival patients up to 3 days from admission. These results support TBI-specific purine signatures, suggesting GTP as a promising biomarker of mortality and guanosine as an indicator of long-term functional disability.


Assuntos
Lesões Encefálicas Traumáticas , Biomarcadores/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/diagnóstico , Estudos Transversais , Escala de Coma de Glasgow , Guanosina , Guanosina Trifosfato , Humanos , Purinas , Xantina
3.
JAMA ; 322(4): 336-347, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31334794

RESUMO

IMPORTANCE: United States government personnel experienced potential exposures to uncharacterized directional phenomena while serving in Havana, Cuba, from late 2016 through May 2018. The underlying neuroanatomical findings have not been described. OBJECTIVE: To examine potential differences in brain tissue volume, microstructure, and functional connectivity in government personnel compared with individuals not exposed to directional phenomena. DESIGN, SETTING, AND PARTICIPANTS: Forty government personnel (patients) who were potentially exposed and experienced neurological symptoms underwent evaluation at a US academic medical center from August 21, 2017, to June 8, 2018, including advanced structural and functional magnetic resonance imaging analytics. Findings were compared with imaging findings of 48 demographically similar healthy controls. EXPOSURES: Potential exposure to uncharacterized directional phenomena of unknown etiology, manifesting as pressure, vibration, or sound. MAIN OUTCOMES AND MEASURES: Potential imaging-based differences between patients and controls with regard to (1) white matter and gray matter total and regional brain volumes, (2) cerebellar tissue microstructure metrics (eg, mean diffusivity), and (3) functional connectivity in the visuospatial, auditory, and executive control subnetworks. RESULTS: Imaging studies were completed for 40 patients (mean age, 40.4 years; 23 [57.5%] men; imaging performed a median of 188 [range, 4-403] days after initial exposure) and 48 controls (mean age, 37.6 years; 33 [68.8%] men). Mean whole brain white matter volume was significantly smaller in patients compared with controls (patients: 542.22 cm3; controls: 569.61 cm3; difference, -27.39 [95% CI, -37.93 to -16.84] cm3; P < .001), with no significant difference in the whole brain gray matter volume (patients: 698.55 cm3; controls: 691.83 cm3; difference, 6.72 [95% CI, -4.83 to 18.27] cm3; P = .25). Among patients compared with controls, there were significantly greater ventral diencephalon and cerebellar gray matter volumes and significantly smaller frontal, occipital, and parietal lobe white matter volumes; significantly lower mean diffusivity in the inferior vermis of the cerebellum (patients: 7.71 × 10-4 mm2/s; controls: 8.98 × 10-4 mm2/s; difference, -1.27 × 10-4 [95% CI, -1.93 × 10-4 to -6.17 × 10-5] mm2/s; P < .001); and significantly lower mean functional connectivity in the auditory subnetwork (patients: 0.45; controls: 0.61; difference, -0.16 [95% CI, -0.26 to -0.05]; P = .003) and visuospatial subnetwork (patients: 0.30; controls: 0.40; difference, -0.10 [95% CI, -0.16 to -0.04]; P = .002) but not in the executive control subnetwork (patients: 0.24; controls: 0.25; difference: -0.016 [95% CI, -0.04 to 0.01]; P = .23). CONCLUSIONS AND RELEVANCE: Among US government personnel in Havana, Cuba, with potential exposure to directional phenomena, compared with healthy controls, advanced brain magnetic resonance imaging revealed significant differences in whole brain white matter volume, regional gray and white matter volumes, cerebellar tissue microstructural integrity, and functional connectivity in the auditory and visuospatial subnetworks but not in the executive control subnetwork. The clinical importance of these differences is uncertain and may require further study.


Assuntos
Encéfalo/patologia , Empregados do Governo , Doenças do Sistema Nervoso/diagnóstico por imagem , Adulto , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Cuba , Imagem de Difusão por Ressonância Magnética , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Doenças do Sistema Nervoso/etiologia , Ruído/efeitos adversos , Tamanho do Órgão , Valores de Referência , Estados Unidos , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem
4.
J Neurotrauma ; 36(14): 2246-2259, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30794079

RESUMO

Traumatic brain injury (TBI) increases Ca2+ influx into neurons and desynchronizes mitochondrial function leading to energy depletion and apoptosis. This process may be influenced by brain testosterone (TS) levels, which are known to decrease after TBI. We hypothesized that a TS-based therapy could preserve mitochondrial neuroenergetics after TBI, thereby reducing neurodegeneration. C57BL/6J mice were submitted to sham treatment or severe parasagittal controlled cortical impact (CCI) and were subcutaneously injected with either vehicle (VEH-SHAM and VEH-CCI) or testosterone cypionate (15 mg/kg, TS-CCI) for 10 days. Cortical tissue homogenates ipsilateral to injury were used for neurochemical analysis. The VEH-CCI group displayed an increased Ca2+-induced mitochondrial swelling after the addition of metabolic substrates (pyruvate, malate, glutamate, succinate, and adenosine diphosphate [PMGSA]). The addition of Na+ stimulated mitochondrial Ca2+ extrusion through Na+/Ca2+/Li+ exchanger (NCLX) in VEH-SHAM and TS-CCI, but not in the VEH-CCI group. Reduction in Ca2+ efflux post-injury was associated with impaired mitochondrial membrane potential formation/dissipation, and decreased mitochondrial adenosine triphosphate (ATP)-synthase coupling efficiency. Corroborating evidence of mitochondrial uncoupling was observed with an increase in H2O2 production post-injury, but not in superoxide dismutase (SOD2) protein levels. TS administration significantly reduced these neuroenergetic alterations. At molecular level, TS prevented the increase in pTauSer396 and alpha-Spectrin fragmentation by the Ca2+dependent calpain-2 activation, and decreased both caspase-3 activation and Bax/BCL-2 ratio, which suggests a downregulation of mitochondrial apoptotic signals. Search Tool for the Retrieval of Interacting Genes/Proteins database provided two distinct gene/protein clusters, "upregulated and downregulated," interconnected through SOD2. Therefore, TS administration after a severe CCI improves the mitochondrial Ca2+extrusion through NCLX exchanger and ATP synthesis efficiency, ultimately downregulating the overexpression of molecular drivers of neurodegeneration.


Assuntos
Androgênios/farmacologia , Lesões Encefálicas Traumáticas/patologia , Mitocôndrias/efeitos dos fármacos , Degeneração Neural/patologia , Testosterona/análogos & derivados , Animais , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Distribuição Aleatória , Testosterona/farmacologia
7.
JAMA ; 319(11): 1125-1133, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29450484

RESUMO

Importance: From late 2016 through August 2017, US government personnel serving on diplomatic assignment in Havana, Cuba, reported neurological symptoms associated with exposure to auditory and sensory phenomena. Objective: To describe the neurological manifestations that followed exposure to an unknown energy source associated with auditory and sensory phenomena. Design, Setting, and Participants: Preliminary results from a retrospective case series of US government personnel in Havana, Cuba. Following reported exposure to auditory and sensory phenomena in their homes or hotel rooms, the individuals reported a similar constellation of neurological symptoms resembling brain injury. These individuals were referred to an academic brain injury center for multidisciplinary evaluation and treatment. Exposures: Report of experiencing audible and sensory phenomena emanating from a distinct direction (directional phenomena) associated with an undetermined source, while serving on US government assignments in Havana, Cuba, since 2016. Main Outcomes and Measures: Descriptions of the exposures and symptoms were obtained from medical record review of multidisciplinary clinical interviews and examinations. Additional objective assessments included clinical tests of vestibular (dynamic and static balance, vestibulo-ocular reflex testing, caloric testing), oculomotor (measurement of convergence, saccadic, and smooth pursuit eye movements), cognitive (comprehensive neuropsychological battery), and audiometric (pure tone and speech audiometry) functioning. Neuroimaging was also obtained. Results: Of 24 individuals with suspected exposure identified by the US Department of State, 21 completed multidisciplinary evaluation an average of 203 days after exposure. Persistent symptoms (>3 months after exposure) were reported by these individuals including cognitive (n = 17, 81%), balance (n = 15, 71%), visual (n = 18, 86%), and auditory (n = 15, 68%) dysfunction, sleep impairment (n = 18, 86%), and headaches (n = 16, 76%). Objective findings included cognitive (n = 16, 76%), vestibular (n = 17, 81%), and oculomotor (n = 15, 71%) abnormalities. Moderate to severe sensorineural hearing loss was identified in 3 individuals. Pharmacologic intervention was required for persistent sleep dysfunction (n = 15, 71%) and headache (n = 12, 57%). Fourteen individuals (67%) were held from work at the time of multidisciplinary evaluation. Of those, 7 began graduated return to work with restrictions in place, home exercise programs, and higher-level work-focused cognitive rehabilitation. Conclusions and Relevance: In this preliminary report of a retrospective case series, persistent cognitive, vestibular, and oculomotor dysfunction, as well as sleep impairment and headaches, were observed among US government personnel in Havana, Cuba, associated with reports of directional audible and/or sensory phenomena of unclear origin. These individuals appeared to have sustained injury to widespread brain networks without an associated history of head trauma.


Assuntos
Empregados do Governo , Perda Auditiva Neurossensorial/etiologia , Doenças do Sistema Nervoso/etiologia , Ruído/efeitos adversos , Transtornos Somatoformes/etiologia , Adulto , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico , Concussão Encefálica/etiologia , Cuba , Diagnóstico Diferencial , Feminino , Cefaleia/etiologia , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/reabilitação , Neuroimagem , Testes Neuropsicológicos , Doenças do Nervo Oculomotor/etiologia , Equilíbrio Postural , Transtornos de Sensação/etiologia , Transtornos Somatoformes/diagnóstico , Transtornos Somatoformes/reabilitação , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA