Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11674, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468518

RESUMO

Coralsnakes of the genus Micrurus are a diverse group of venomous snakes ranging from the southern United States to southern South America. Much uncertainty remains over the genus diversity, and understanding Micrurus systematics is of medical importance. In particular, the widespread Micrurus nigrocinctus spans from Mexico throughout Central America and into Colombia, with a number of described subspecies. This study provides new insights into the phylogenetic relationships within M. nigrocinctus by examining sequence data from a broad sampling of specimens from Mexico, Guatemala, Honduras, Nicaragua, Costa Rica, and Panama. The recovered phylogenetic relationships suggest that M. nigrocinctus is a species complex originating in the Pliocene and composed of at least three distinct species-level lineages. In addition, recovery of highly divergent clades supports the elevation of some currently recognized subspecies to the full species rank while others may require synonymization.


Assuntos
Peçonhas , Estados Unidos , Filogenia , América Central , Panamá , México
2.
Electron. j. biotechnol ; Electron. j. biotechnol;42: 23-29, Nov. 2019. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1087353

RESUMO

Background: Snakes are found on every continent in the world except Antarctica, and on smaller land masses. Being ecologically important, they also cause a large number of bites, leading to millions of deaths. Mitochondrial and nuclear gene sequences are being used to identify, characterize, and infer genetic biodiversity among different snake species. Furthermore, phylogenetics helps in inferring the relationships and evolutionary histories among these species. Black cobra is one of the four most venomous snakes in Pakistan. Four mitochondrial (ND4, Cytochrome b, 12S rRNA, and 16S rRNA) and four nuclear (C-mos, RAG-1, BDNF, and NT3) genes were used to trace diversity and infer the phylogenetic relationship of black cobra in Pakistan. Results: Almost similar phylogenies were obtained through maximum likelihood and Bayesian inference, showing two species of cobra in Pakistan, namely, black cobra (Naja naja) and brown cobra (Naja oxiana). All Naja species were divided into three clades: black cobra (N. naja) and brown cobra (N. oxiana) cladding with different species of Naja; N. naja (Pakistan) cladding with N. naja from Nepal; and N. oxiana showed close relationship with Naja kaouthia from Thailand and Naja siamensis from Thailand. Conclusion: It was confirmed genetically that there are two cobra species in Pakistan, i.e., black and brown cobras. This study will help in not only genetic conservation but also developing anti-venom against snake species.


Assuntos
Naja naja/genética , Paquistão , Filogenia , Especificidade da Espécie , DNA Mitocondrial , Reação em Cadeia da Polimerase , Elapidae/genética , Biodiversidade
3.
Evolution ; 70(7): 1435-49, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27251954

RESUMO

Strong spatial sorting of genetic variation in contiguous populations is often explained by local adaptation or secondary contact following allopatric divergence. A third explanation, spatial sorting by stochastic effects of range expansion, has been considered less often though theoretical models suggest it should be widespread, if ephemeral. In a study designed to delimit species within a clade of venomous coralsnakes, we identified an unusual pattern within the Texas coral snake (Micrurus tener): strong spatial sorting of divergent mitochondrial (mtDNA) lineages over a portion of its range, but weak sorting of these lineages elsewhere. We tested three alternative hypotheses to explain this pattern-local adaptation, secondary contact following allopatric divergence, and range expansion. Collectively, near panmixia of nuclear DNA, the signal of range expansion associated sampling drift, expansion origins in the Gulf Coast of Mexico, and species distribution modeling suggest that the spatial sorting of divergent mtDNA lineages within M. tener has resulted from genetic surfing of standing mtDNA variation-not local adaptation or allopatric divergence. Our findings highlight the potential for the stochastic effects of recent range expansion to mislead estimations of population divergence made from mtDNA, which may be exacerbated in systems with low vagility, ancestral mtDNA polymorphism, and male-biased dispersal.


Assuntos
DNA Mitocondrial/genética , Elapidae/genética , Fluxo Gênico , Haplótipos , Animais , Evolução Molecular , México , Filogenia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA