Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 181(15): 2676-2696, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38627101

RESUMO

BACKGROUND AND PURPOSE: Neuropathic pain, a debilitating condition with unmet medical needs, can be characterised as hyperexcitability of nociceptive neurons caused by dysfunction of ion channels. Voltage-gated potassium channels type 7 (Kv7), responsible for maintaining neuronal resting membrane potential and thus excitability, reside under tight control of G protein-coupled receptors (GPCRs). Calcium-sensing receptor (CaSR) is a GPCR that regulates the activity of numerous ion channels, but whether CaSR can control Kv7 channel function has been unexplored until now. EXPERIMENTAL APPROACH: Experiments were conducted in recombinant cell models, mouse dorsal root ganglia (DRG) neurons and human induced pluripotent stem cell (hiPSC)-derived nociceptive-like neurons using patch-clamp electrophysiology and molecular biology techniques. KEY RESULTS: Our results demonstrate that CaSR is expressed in recombinant cell models, hiPSC-derived nociceptive-like neurons and mouse DRG neurons, and its activation induced depolarisation via Kv7.2/7.3 channel inhibition. The CaSR-Kv7.2/7.3 channel crosslink was mediated via the Gi/o protein-adenylate cyclase-cyclicAMP-protein kinase A signalling cascade. Suppression of CaSR function demonstrated a potential to rescue hiPSC-derived nociceptive-like neurons from algogenic cocktail-induced hyperexcitability. CONCLUSION AND IMPLICATIONS: This study demonstrates that the CaSR-Kv7.2/7.3 channel crosslink, via a Gi/o protein signalling pathway, effectively regulates neuronal excitability, providing a feasible pharmacological target for neuronal hyperexcitability management in neuropathic pain.


Assuntos
Gânglios Espinais , Células-Tronco Pluripotentes Induzidas , Receptores de Detecção de Cálcio , Transdução de Sinais , Humanos , Receptores de Detecção de Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Camundongos , Gânglios Espinais/metabolismo , Gânglios Espinais/citologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Nociceptores/metabolismo , Células Cultivadas , Células HEK293
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA