Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 34(4): 457-468, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30604913

RESUMO

The toxicity of titanium dioxide nanoparticles (TiO2 -NP) in the blood, liver, muscle, and brain of a Neotropical detritivorous fish, Prochilodus lineatus, was tested. Juvenile fish were exposed to 0, 1, 5, 10, and 50 mg L-1 of TiO2 -NP for 48 hours (acute exposure) or 14 days (subchronic exposure) to evaluate changes in hematology, red blood cell (RBC) genotoxicity/mutagenicity, liver function (reactive oxygen species (ROS) production, antioxidant responses, detoxification, and histopathology), acetylcholinesterase (AChE) activity in muscles and brain, and Ti bioaccumulation. TiO2 -NP did not cause genetic damage to RBC, but acutely decreased white blood cells (WBC) and increased monocytes. Subchronically, RBC decreased, mean cell volume and hemoglobin increased, and WBC and lymphocytes decreased. Therefore, NP has the potential to affect immune system and increase energy expenditure, reducing the fish's ability to avoid predator and to resist pathogens. In the liver, acute exposure decreased ROS and increased glutathione (GSH) content, while subchronic exposure decreased superoxide dismutase activity and increased glutathione-S-transferase (GST) activity and GSH content. GSH and GST seem to play an essential role in metabolizing NP and ROS, likely increasing hepatocytes' metabolic rate, which may be the cause of observed cell hypertrophy, disarrangement of hepatic cords and degenerative morphological alterations. Although most studies indicate that the kidney is responsible for metabolizing and/or eliminating TiO2 -NP, this study shows that the liver also has a main role in these processes. Nevertheless, Ti still accumulated in the liver, muscle, and brain and decreased muscular AChE activity after acute exposure, showing neurotoxic potential. More studies are needed to better understand the biochemical pathways TiO2 -NP are metabolized and how its bioaccumulation may affect fish homeostasis and survival in the environment.


Assuntos
Encéfalo/efeitos dos fármacos , Caraciformes/sangue , Fígado/efeitos dos fármacos , Músculos/efeitos dos fármacos , Nanopartículas/toxicidade , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Contagem de Células Sanguíneas , Encéfalo/enzimologia , Encéfalo/patologia , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Fígado/enzimologia , Fígado/patologia , Músculos/enzimologia , Músculos/patologia , Nanopartículas/metabolismo , Titânio/metabolismo , Poluentes Químicos da Água/metabolismo
2.
Aquat Toxicol ; 200: 168-177, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29772474

RESUMO

Manufactured titanium dioxide nanoparticles (TiO2-NP) have been intensely applied in numerous industrial products and may be a risk for aquatic systems as they are not completely removed from domestic and industrial wastes after water treatment. This study evaluated the osmo- and ionic balance, Na+/K+-ATPase, H+-ATPase and carbonic anhydrase activities and the mitochondria-rich cells (MRC) in the gills and kidney of the Neotropical fish Prochilodus lineatus after 2 (acute) and 14 (subchronic) days of exposure to nominal 0, 1, 5, 10 and 50 mg L-1 TiO2-NP. The nominal concentrations corresponded to 0.0, 0.6, 1.6, 2.7 and 18.1 mg L-1 suspended TiO2-NP, respectively, in the water column one hour after NP introduction and were maintained for at least 24 h. Acute exposure to TiO2-NP decreased plasma osmolality and Ca2+ levels. Na+/K+-ATPase, H+-ATPase and carbonic anhydrase activities were inhibited in the gills, but not in the kidney. Total MRC density did not change in gills and kidneys. At gill surface, total MRC density decreased in fish exposed to 50 mg L-1 TiO2-NP and the total MRC fractional surface area unchanged although, there were some changes in the fractional area of MRC with apical microvilli (MRCm) and MRC with apical sponge-like structure (MRCs). MRCm was more abundant than MRCs. After subchronic exposure, there was no change in plasma osmolality, ionic balance and enzyme activities. Total gill MRC density increased in the filament epithelium and renal tubules. In the gills, MRC contacting water exhibited some adjustments. Total MRC and fractional surface area unchanged, but there was an increase of MRCs contacting water at gill surface after exposure to10 and 50 mg L-1 TiO2-NP. MRC proliferation in filament epithelium and in renal tubules as well as the increasing MRCs at gill surface may have contributed to avoid change in plasma osmolality, ionic balance and enzyme activities and suggested a cellular physiological and morphological response to restore and maintain osmotic and ionic homeostasis after subchronic exposure.


Assuntos
Caraciformes/metabolismo , Mitocôndrias/metabolismo , Nanopartículas/toxicidade , Titânio/toxicidade , Clima Tropical , Animais , Anidrases Carbônicas/metabolismo , Brânquias/metabolismo , Brânquias/ultraestrutura , Íons , Rim/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Concentração Osmolar , Tamanho da Partícula , ATPases Translocadoras de Prótons/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Água/química , Poluentes Químicos da Água/toxicidade , Equilíbrio Hidroeletrolítico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA