Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 663: 192-198, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30659801

RESUMO

Tissue-nonspecific alkaline phosphatase (TNAP) is a key enzyme in the biomineralization process as it produces phosphate from a number of phospho-substrates stimulating mineralization while it also inactivates inorganic pyrophosphate, a potent mineralization inhibitor. We have previously reported on the reconstitution of TNAP on Langmuir monolayers as well as proteoliposomes. In the present study, thin films composed of dimyristoylphosphatidic acid (DMPA) were deposited on titanium supports by the Langmuir-Blodgett (LB) technique, and we determined preservation of TNAP's phosphohydrolytic activity after incorporation into the LB films. Increased mineralization was observed after exposing the supports containing the DMPA:TNAP LB films to solutions of phospho-substrates, thus evidencing the role of TNAP on the growth of calcium phosphates after immobilization. These coatings deposited on metallic supports can be potentially applied as osteoconductive materials, aiming at the optimization of bone-substitutes integration in vivo.


Assuntos
Fosfatase Alcalina/metabolismo , Biomimética , Biomineralização , Enzimas Imobilizadas/metabolismo , Titânio/química , Fosfatos de Cálcio/química , Glicerofosfolipídeos/química , Cinética , Propriedades de Superfície
2.
Biophys Rev ; 9(5): 747-760, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28852989

RESUMO

During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix (ECM) by promoting the synthesis of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Several lipid and proteins present in the membrane of the MVs mediate the interactions of MVs with the ECM and regulate the initial mineral deposition and posterior propagation. Among the proteins of MV membranes, ion transporters control the availability of phosphate and calcium needed for initial HA deposition. Phosphatases (orphan phosphatase 1, ectonucleotide pyrophosphatase/phosphodiesterase 1 and tissue-nonspecific alkaline phosphatase) play a crucial role in controlling the inorganic pyrophosphate/inorganic phosphate ratio that allows MV-mediated initiation of mineralization. The lipidic microenvironment can help in the nucleation process of first crystals and also plays a crucial physiological role in the function of MV-associated enzymes and transporters (type III sodium-dependent phosphate transporters, annexins and Na+/K+ ATPase). The whole process is mediated and regulated by the action of several molecules and steps, which make the process complex and highly regulated. Liposomes and proteoliposomes, as models of biological membranes, facilitate the understanding of lipid-protein interactions with emphasis on the properties of physicochemical and biochemical processes. In this review, we discuss the use of proteoliposomes as multiple protein carrier systems intended to mimic the various functions of MVs during the initiation and propagation of mineral growth in the course of biomineralization. We focus on studies applying biophysical tools to characterize the biomimetic models in order to gain an understanding of the importance of lipid-protein and lipid-lipid interfaces throughout the process.

3.
Colloids Surf B Biointerfaces ; 118: 31-40, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24727116

RESUMO

Hydroxyapatite serves as a bioactive material for biomedical purposes, because it shares similarities with the inorganic part of the bone. However, how this material deposits on metallic surfaces using biomimetic matrices remains unclear. In this study, we deposited dihexadecyl phosphate, a phospholipid that bears a simple chemical structure, on stainless steel and titanium surfaces using the Langmuir-Blodgett (LB) technique; we employed the resulting matrix to grow carbonated hydroxyapatite. We obtained the calcium phosphate coating via a two-step process: we immersed the surfaces modified with the LB films into phosphate buffer, and then, we exposed the metal to a solution that simulated the concentration of ions in the human plasma. The latter step generated carbonated hydroxyapatite, the same mineral existing in the bone. The free energy related to the surface roughness and composition increased after we modified the supports. We investigated the film morphology by scanning electron and atomic force microscopies and determined surface composition by infrared spectroscopy and energy dispersive X-ray. We also studied the role of the surface roughness and the surface chemistry on cell viability. The surface-modified Ti significantly increased osteoblastic cells proliferation, supporting the potential use of these surfaces as osteogenic materials.


Assuntos
Carbonatos/química , Durapatita/química , Metais/química , Organofosfatos/química , Animais , Carbonatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Durapatita/farmacologia , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Organofosfatos/farmacologia , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Pressão , Ratos , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Aço Inoxidável/química , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA