Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(10): e0276297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264921

RESUMO

Many vertebrate species undergo population fluctuations that may be random or regularly cyclic in nature. Vertebrate population cycles in northern latitudes are driven by both endogenous and exogenous factors. Suggested causes of mysterious disappearances documented for populations of the Neotropical, herd-forming, white-lipped peccary (Tayassu pecari, henceforth "WLP") include large-scale movements, overhunting, extreme floods, or disease outbreaks. By analyzing 43 disappearance events across the Neotropics and 88 years of commercial and subsistence harvest data for the Amazon, we show that WLP disappearances are widespread and occur regularly and at large spatiotemporal scales throughout the species' range. We present evidence that the disappearances represent 7-12-year troughs in 20-30-year WLP population cycles occurring synchronously at regional and perhaps continent-wide spatial scales as large as 10,000-5 million km2. This may represent the first documented case of natural population cyclicity in a Neotropical mammal. Because WLP populations often increase dramatically prior to a disappearance, we posit that their population cycles result from over-compensatory, density-dependent mortality. Our data also suggest that the increase phase of a WLP cycle is partly dependent on recolonization from proximal, unfragmented and undisturbed forests. This highlights the importance of very large, continuous natural areas that enable source-sink population dynamics and ensure re-colonization and local population persistence in time and space.


Assuntos
Artiodáctilos , Animais , Florestas , Mamíferos
2.
Nat Ecol Evol ; 1(11): 1670-1676, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28993614

RESUMO

Biodiversity affects many ecosystem functions and services, including carbon cycling and retention. While it is known that the efficiency of carbon capture and biomass production by ecological communities increases with species diversity, the role of vertebrate animals in the carbon cycle remains undocumented. Here, we use an extensive dataset collected in a high-diversity Amazonian system to parse out the relationship between animal and plant species richness, feeding interactions, tree biomass and carbon concentrations in soil. Mammal and tree species richness is positively related to tree biomass and carbon concentration in soil-and the relationship is mediated by organic remains produced by vertebrate feeding events. Our research advances knowledge of the links between biodiversity and carbon cycling and storage, supporting the view that whole community complexity-including vertebrate richness and trophic interactions-drives ecosystem function in tropical systems. Securing animal and plant diversity while protecting landscape integrity will contribute to soil nutrient content and carbon retention in the biosphere.


Assuntos
Biodiversidade , Biomassa , Ciclo do Carbono , Mamíferos , Solo/química , Árvores/fisiologia , Animais , Florestas , Guiana
3.
Proc Natl Acad Sci U S A ; 110(13): 4956-61, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479648

RESUMO

Protected areas in tropical countries are managed under different governance regimes, the relative effectiveness of which in avoiding deforestation has been the subject of recent debates. Participants in these debates answer appeals for more strict protection with the argument that sustainable use areas and indigenous lands can balance deforestation pressures by leveraging local support to create and enforce protective regulations. Which protection strategy is more effective can also depend on (i) the level of deforestation pressures to which an area is exposed and (ii) the intensity of government enforcement. We examine this relationship empirically, using data from 292 protected areas in the Brazilian Amazon. We show that, for any given level of deforestation pressure, strictly protected areas consistently avoided more deforestation than sustainable use areas. Indigenous lands were particularly effective at avoiding deforestation in locations with high deforestation pressure. Findings were stable across two time periods featuring major shifts in the intensity of government enforcement. We also observed shifting trends in the location of protected areas, documenting that between 2000 and 2005 strictly protected areas were more likely to be established in high-pressure locations than in sustainable use areas and indigenous lands. Our findings confirm that all protection regimes helped reduce deforestation in the Brazilian Amazon.


Assuntos
Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Ecossistema , Árvores , Brasil , Conservação dos Recursos Naturais/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA