Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Microbiol ; 54(4): 3187-3200, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857777

RESUMO

Crop rotation and rhizobial inoculation are strategies to increase yield by means of organic matter addition and modulation of microbial diversity. However, the extent to which these agricultural practices change soil Bradyrhizobium populations, soybean grain yield, and economic benefits to farmers is unclear. Thus, this study aimed to evaluate the interaction between crop rotation and inoculation of soybean (Glycine max) cultivated in two contrasting soils (clayey and sandy soil) on biological nitrogen fixation components, grain yields, and profits. Field experiments with a three-year crop rotation system were carried out to compare effects of inoculation and crop rotations on soil chemical attributes, bradyrhizobia most probable number (MPN) and diversity, soybean nodulation, grain yield, and economic indicators of inoculation in different crop rotations. The crop rotation did not affect the soil MPN cells of bradyrhizobia, but the inoculation and the soil sampling time did, ranging from 3.61-4.42 to 4.40-4.82 in the sandy soil, while in the clayey soil they were from 5.19-6.34 to 6.61-7.14 in Log10 per g of soil with higher population after harvest of summer crops. In the clayey soil, crop rotation influenced soybean nodulation. The grain yield of inoculated soybean in the clayey soil was higher than that in the sandy soil. Soybean inoculation with Bradyrhizobium spp. increased the profitability of agricultural production systems by up to 45% in clayey soil and up to 7% in sandy soil.


Assuntos
Bradyrhizobium , Glycine max , Glycine max/microbiologia , Solo , Agricultura , Grão Comestível , Areia , Produção Agrícola
2.
Sci. agric. ; 75(6): 526-529, Nov.-Dec.2018. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-19014

RESUMO

Mechanical harvesting leaves in its wake a considerable amount of straw in the field, which can be effectively utilized to improve the soil condition and sugarcane yield. However, there is no specific information as to the quantity of straw mulch required to achieve such effects and as to whether it can be used in other sectors for bioelectricity and ethanol production. The aim of this research was to evaluate the effect of removing different amounts of straw from the field and its impact on the yield and industrial quality of sugarcane ratoons. The experiment was carried out on Rhodic soil where six treatments were evaluated including 0 %, 25 % (5 Mg ha1), 50 % (10 Mg ha1), 75 % (15 Mg ha1), 100 % (20 Mg ha1) straw on the soil surface and burned sugarcane (where 100 % of the straw was burned). The influence on yield and industrial quality was calculated using total soluble solids, Pol (Apparent sucrose content), apparent purity, total sugars, reducing sugars and fiber. Shifting the harvesting system from burned cane to growing under straw mulch improved crop yield as well as favoring sugar contents during water deficit conditions. The straw left on the soil did not affect industrial quality in any way during the trials; however, under drought conditions, treatments with 50 and 75 % of straw resulted in a 76 % higher yield compared to burned sugarcane, and 29 % more than the 0 %, 25 % to 100 % treatments of straw mulch thus favoring higher sugar production. The removal of 50 % of the straw caused no damage to the sugarcane crop.(AU)


Assuntos
Saccharum , Biomassa , Tratamento do Solo , 24444
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA