Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390770

RESUMO

Quinone outside inhibitor (QoI) fungicide resistance in Alternaria alternata populations was reported in Brazil for the first time in 2019, in São Paulo orchards, and the mutation G143A in cytochrome b (cytb) was found in resistant isolates. Our study investigated the infectious process, production of reactive oxygen species (ROS), and fungal cell death in resistant (QoI-R) and sensitive (QoI-S) A. alternata pathotype tangerine (Aapt) isolates. Morphological characterization of Aapt isolates was performed using confocal laser scanning microscopy (CLSM). Alternaria brown spot (ABS) symptoms were produced by Aapt isolates on tangelo cv. BRS Piemonte. Germination of QoI-R conidia and production of germ tubes on tangelo leaflets treated with 100 µg mL-1 of pyraclostrobin 18 h after inoculation (hai) was observed using scanning electron microscopy (SEM). At the same time, QoI-S conidial germination was inhibited on tangelo leaflets treated with pyraclostrobin. ROS production and cell death in Aapt isolates at high fungicide concentrations were observed using CLSM. QoI-S conidia exhibited high ROS production, indicating high oxidative stress. When dyed with propidium iodate (PI), QoI-S conidia emitted red fluorescence, showing cell death and confirming their sensitive phenotype. In contrast, QoI-R conidia neither produced ROS nor exhibited red fluorescence, indicating no cell death and confirming their resistant phenotype. Therefore, our findings evidence that microscopic techniques may help characterize events during fungi-plant interactions, ROS production, cell death, and Aapt phenotypes resistant and sensitive to QoIs using fluorometric protocols.

2.
Pest Manag Sci ; 78(12): 5251-5258, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36054071

RESUMO

BACKGROUND: Quinone outside inhibitor (QoI) fungicides have not been effective in controlling the wheat blast disease [Pyricularia oryzae Triticum lineage (PoTl)] in Brazil. The first report of resistance of PoTl to QoIs in this country occurred in 2015. This study aimed to test hypotheses about the changes in fitness parameters and competitive advantage of the QoI-resistant (R) PoTl isolate group compared to the sensitive (S) isolate group. Mycelial growth on PDA medium and in vivo conidial production, incubation period and disease severity were analyzed as fitness parameters. The competitive ability was measured on wheat leaves and heads inoculated with mixtures of R:S isolates at the following proportions: 0S:100R, 20S:80R, 50S:50R, 80S:20R, 100S:0R, and 0S:0R. RESULTS: The QoI-R isolate group had significantly higher fitness than the sensitive isolate group, considering both in vitro and in vivo parameters. The highest in vivo conidial production on wheat leaves and the highest leaf and head disease severity were detected when resistant strains were predominant in the isolate's mixtures (20S:80R or 0S:100R proportions), in the absence of fungicide pressure. Conidia harvested from wheat blast lesions on leaves inoculated with 20S:80R and 0S:100R mixtures were resistant to QoIs in vitro assays based on discriminatory doses of the fungicide. CONCLUSION: Therefore, QoI resistance facilitated a higher fitness and a competitive advantage in PoTl, which contrasts with the evolutionary theory that associates a fitness cost to fungicide resistance. We discuss the evolutionary and ecological implications of the higher fitness as found in the fungicide-resistant adapted populations of the wheat blast pathogen. © 2022 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Triticum , Estrobilurinas/farmacologia , Farmacorresistência Fúngica , Doenças das Plantas , Esporos Fúngicos , Benzoquinonas
3.
Planta ; 252(2): 24, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32676874

RESUMO

MAIN CONCLUSION: The infection of wheat leaves by Pyricularia oryzae induced remarkable reprogramming of the primary metabolism (amino acids, sugars, and organic acids) in favor of a successful fungal infection and certain changes were conserved among cultivars regardless of their level of resistance to blast. Wheat blast, caused by Pyricularia oryzae, has become one of the major threats for food security worldwide. Here, we investigated the behavior of three wheat cultivars (BR-18, Embrapa-16, and BRS-Guamirim), differing in their level of resistance to blast, by analyzing changes in cellular damage, antioxidative metabolism, and defense compounds as well as their photosynthetic performance and metabolite profile. Blast severity was lower by 45 and 33% in Embrapa-16 and BR-18 cultivars (moderately resistant), respectively, at 120 h after inoculation in comparison to BRS-Guamirim cultivar (susceptible). Cellular damage caused by P. oryzae infection was great in BRS-Guamirim compared to BR-18. The photosynthetic performance of infected plants was altered due to diffusional and biochemical limitations for CO2 fixation. At the beginning of the infection process, dramatic changes in both carbohydrate metabolism and on the levels of amino acids, intermediate compounds of the tricarboxylic acid cycle, and polyamines were noticed regardless of cultivar suggesting an extensive metabolic reprogramming of the plants following fungal infection. Nevertheless, Embrapa-16 plants displayed a more robust and efficient antioxidant metabolism, higher phenylalanine ammonia-lyase and polyphenoloxidase activities and higher concentrations of phenolics and lignin, which, altogether, helped them to counteract more efficiently the infection by P. oryzae. Our results demonstrated that P. oryzae infection significantly modified the metabolism of wheat plants and different types of metabolic defence may act both additively and synergistically to provide additional plant protection to blast.


Assuntos
Antioxidantes/metabolismo , Ascomicetos/fisiologia , Dióxido de Carbono/metabolismo , Fotossíntese , Doenças das Plantas/imunologia , Triticum/metabolismo , Metaboloma , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Triticum/imunologia , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA