Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 11: 1016193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970405

RESUMO

Given the lack of investments, structure, and difficulty of metabolite isolation, promising natural product studies do not progress to preclinical studies, such as pharmacokinetics. 2'-Hydroxyflavanone (2HF) is a flavonoid that has shown promising results in different types of cancer and leishmaniasis. For accurate quantification of 2HF in BALB/c mouse blood, a validated HPLC-MS/MS method was developed. Chromatographic analysis was performed using C18 (5µm, 150 mm × 4.6 mm). The mobile phase consisted of water containing 0.1% formic acid, acetonitrile, and methanol (35/52/13 v/v/v) at a flow rate and total running time of 0.8 mL/min and 5.50 min, respectively, with an injection volume of 20 µL. 2HF was detected by electrospray ionization in negative mode (ESI-) using multiple reaction monitoring (MRM). The validated bioanalytical method showed satisfactory selectivity without significant interference for the 2HF and IS. In addition, the concentration range between 1 and 250 ng/mL showed good linearity (r = 0.9969). The method showed satisfactory results for the matrix effect. Precision and accuracy intervals varied between 1.89% and 6.76% and 95.27% and 100.77%, respectively, fitting the criteria. No degradation of 2HF in the biological matrix was observed since stability under freezing and thawing conditions, short duration, postprocessing, and long duration showed deviations less than 15%. Once validated, the method was successfully applied in a 2HF oral pharmacokinetic study with mouse blood, and the pharmacokinetic parameters were determined. 2HF demonstrated a Cmax of 185.86 ng/mL, a Tmax of 5 min, and a half-life (T1/2) of 97.52 min.

2.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35056078

RESUMO

Atazanavir (ATV) has already been considered as a potential repurposing drug to 2019 coronavirus disease (COVID-19); however, there are controversial reports on its mechanism of action and effectiveness as anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Through the pre-clinical chain of experiments: enzymatic, molecular docking, cell-based and in vivo assays, it is demonstrated here that both SARS-CoV-2 B.1 lineage and variant of concern gamma are susceptible to this antiretroviral. Enzymatic assays and molecular docking calculations showed that SARS-CoV-2 main protease (Mpro) was inhibited by ATV, with Morrison's inhibitory constant (Ki) 1.5-fold higher than GC376 (a positive control) dependent of the catalytic water (H2Ocat) content. ATV was a competitive inhibitor, increasing the Mpro's Michaelis-Menten (Km) more than sixfold. Cell-based assays indicated that different lineages of SARS-CoV-2 is susceptible to ATV. Using oral administration of ATV in mice to reach plasmatic exposure similar to humans, transgenic mice expression in human angiotensin converting enzyme 2 (K18-hACE2) were partially protected against lethal challenge with SARS-CoV-2 gamma. Moreover, less cell death and inflammation were observed in the lung from infected and treated mice. Our studies may contribute to a better comprehension of the Mpro/ATV interaction, which could pave the way to the development of specific inhibitors of this viral protease.

3.
J Pharm Biomed Anal ; 117: 405-12, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26440288

RESUMO

Praziquantel (PZQ) is the drug recommended by the World Health Organization for treatment of schistosomiasis. However, the treatment of children with PZQ tablets is complicated due to difficulties to adapt the dose and the extremely bitter taste of PZQ. For this reason, poly (methyl methacrylate) nanoparticles loaded with Praziquantel (PZQ-NP) were developed for preparation of a new formulation to be used in the suspension form. For this reason, the main aim of the present study was to evaluate the pharmacokinetic (PK) profile of PZQ-NP, through HPLC-MS/MS assays. Analyses were performed with an Omnisphere C18 column (5.0 µm×4.6 mm×150.0 mm), using a mixture of an aqueous solution containing 0.1 wt% of formic acid and methanol (15:85-v/v) as the mobile phase at a flow rate of 0.800mL/min. Detection was performed with a hybrid linear ion-trap triple quadrupole mass spectrometer with multiple reactions monitoring in positive ion mode via electrospray ionization. The monitored transitions were m/z 313.18>203.10 for PZQ and m/z 285.31>193.00 for the Internal Standard. The method was validated with the quantification limit of 1.00 ng/mL, requiring samples of 25 µL for analyses. Analytic responses were calibrated with known concentration data, leading to correlation coefficients (r) higher than 0.99. Validation performed with rat plasma showed that PZQ was stable for at least 10 months when stored below -70 °C (long-term stability), for at least 17 h when stored at room temperature (RT, 22 °C) (short-term stability), for at least 47 h when stored at room temperature in auto-sampler vials (post-preparative stability) and for at least 8 successive freeze/thaw cycles at -70 °C. For PK assays, Wistar rats, weighing between 200 and 300 g were used. Blood samples were collected from 0 to 24 h after oral administration of single doses of 60 mg/kg of PZQ-NP or raw PZQ (for the control group). PZQ was extracted from plasma by liquid-liquid extraction with terc-butyl methyl ether. The values obtained for maximum concentration (C(max)) and area under curve (AUC) for the PZQ-NP group were about 3 times smaller than the respective values obtained for the control group. However, the time for achieving maximum concentration (T(max)), the elimination constant (Ke) and the half-life time of elimination (T(½ß)) were not statistically different. These results suggest that PZQ absorption is probably the rate-limiting step for obtainment of better PK parameters for PZQ-NP. Thus, further studies are needed to understand both the PZQ-NP absorption mechanisms and the drug diffusion process through the polymer matrix in vivo, in order to improve the PZQ-NP release profile.


Assuntos
Nanopartículas/metabolismo , Polimetil Metacrilato/farmacocinética , Praziquantel/farmacocinética , Espectrometria de Massas em Tandem/métodos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Nanopartículas/análise , Polimetil Metacrilato/análise , Praziquantel/análise , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA