Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 368: 122141, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128345

RESUMO

Microalgae have emerged as a promising source of biomass to produce renewable biofuels due to their ability to synthesize high-energy density compounds of commercial interest. This study proposes an approach for pilot-scale oil extraction, purification by fractional distillation, hydrocarbon characterization by gas chromatography coupled to mass spectrometry (GC-MS), evaluation of physicochemical parameters of the produced hydrocarbons, preliminary cost analysis, and challenges and future opportunities for green diesel on a commercial scale. Here, the microalgae Tetradesmus obliquus was cultivated in 12 m³ photobioreactors using biodigested swine waste as a culture medium. The resulting biomass was subjected to drying and harvesting, followed by oil extraction using a hot solvent extraction method, followed by distillation to purify the compounds. Three different extraction and distillation experiments were conducted, each using different solvent combinations. The results obtained revealed that extraction with a solvent blend, composed of hexane and ethanol, provided more significant yields compared to extraction with pure hexane. GC-MS analysis showed the presence of alkanes and alkenes in the oil samples, and the proportion of solvent used in the extraction directly influenced the production of alkanes. Additionally, specific hydrocarbons such as 4-methyl-1-decene, 8-heptadecene, 1-pentadecene, 9-heneicosene, and 2-dodecene were identified. The evaluation of the physicochemical parameters demonstrated that the calorific value of the distilled oil samples is within the range of typical values for petroleum diesel. However, it was observed that the distilled oil samples had higher sulfur content compared to conventional diesel. Regarding the cost analysis, it was found that it varies depending on the experimental conditions. In particular, the process using a solvent mixture of 70% hexane and 30% ethanol proved to be more economical than the others, since it extracted a greater quantity of oil with a lower initial biomass requirement. In summary, this microalgae-derived hydrocarbon production process is promising and offers insights for compound purification and future biofuel applications.


Assuntos
Biocombustíveis , Biomassa , Microalgas , Microalgas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Animais , Gasolina , Solventes/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-32401956

RESUMO

Paracoccidioides species cause paracoccidioidomycosis (PCM), a systemic mycosis highly prevalent in Brazil. Therapy of PCM has some issues that make studies for new therapeutic and vaccine targets relevant, such as the P. brasiliensis 60-kDa-heat-shock protein (PbHsp60), an immunogenic antigen that induces protection in experimental mice infection. Here, we investigated the relative expression of mRNA for PbHsp60 in P. brasiliensis in the different morphotypes of P. brasiliensis and in morphological transition phases. In addition, antibodies to rPbHsp60 were produced and used to analyze the location of PbHsp60 in yeast and hyphae by electron microscopy. The analyses showed a substantial increase in the relative amounts of HSP60 mRNA in yeast when compared to mycelium and an intermediate expression in transitional forms. Regarding the cell location, immunoelectron microscopy analysis revealed that PbHsp60 is within the cell wall. These observations suggest that this protein may be involved in the maintenance of the cell wall integrity and the interaction with the host for colonization, infection and pathogenesis.


Assuntos
Chaperonina 60/imunologia , Paracoccidioides/imunologia , RNA Mensageiro/imunologia , Animais , Antígenos de Fungos/imunologia , Expressão Gênica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Paracoccidioides/patogenicidade , Reação em Cadeia da Polimerase
3.
Toxins (Basel) ; 10(12)2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487389

RESUMO

Snake venom serine proteases (SVSPs) are enzymes that are capable of interfering in various parts of the blood coagulation cascade, which makes them interesting candidates for the development of new therapeutic drugs. Herein, we isolated and characterized Moojase, a potent coagulant enzyme from Bothrops moojeni snake venom. The toxin was isolated from the crude venom using a two-step chromatographic procedure. Moojase is a glycoprotein with N-linked glycans, molecular mass of 30.3 kDa and acidic character (pI 5.80⁻6.88). Sequencing of Moojase indicated that it is an isoform of Batroxobin. Moojase was able to clot platelet-poor plasma and fibrinogen solutions in a dose-dependent manner, indicating thrombin-like properties. Moojase also rapidly induced the proteolysis of the Aα chains of human fibrinogen, followed by the degradation of the Bß chains after extended periods of incubation, and these effects were inhibited by PMSF, SDS and DTT, but not by benzamidine or EDTA. RP-HPLC analysis of its fibrinogenolysis confirmed the main generation of fibrinopeptide A. Moojase also induced the fibrinolysis of fibrin clots formed in vitro, and the aggregation of washed platelets, as well as significant amidolytic activity on substrates for thrombin, plasma kallikrein, factor Xia, and factor XIIa. Furthermore, thermofluor analyses and the esterase activity of Moojase demonstrated its very high stability at different pH buffers and temperatures. Thus, studies such as this for Moojase should increase knowledge on SVSPs, allowing their bioprospection as valuable prototypes in the development of new drugs, or as biotechnological tools.


Assuntos
Proteínas de Répteis , Serina Proteases , Venenos de Serpentes/enzimologia , Adulto , Animais , Coagulação Sanguínea/efeitos dos fármacos , Bothrops , Estabilidade Enzimática , Feminino , Fibrinogênio/metabolismo , Humanos , Masculino , Agregação Plaquetária/efeitos dos fármacos , Proteínas de Répteis/química , Proteínas de Répteis/isolamento & purificação , Proteínas de Répteis/farmacologia , Serina Proteases/química , Serina Proteases/isolamento & purificação , Serina Proteases/farmacologia , Adulto Jovem
4.
mBio ; 8(4)2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720727

RESUMO

Among the endemic deep mycoses in Latin America, paracoccidioidomycosis (PCM), caused by thermodimorphic fungi of the Paracoccidioides genus, is a major cause of morbidity. Disease development and its manifestations are associated with both host and fungal factors. Concerning the latter, several recent studies have employed the methodology of gene modulation in P. brasiliensis using antisense RNA (AsRNA) and Agrobacterium tumefaciens-mediated transformation (ATMT) to identify proteins that influence fungus virulence. Our previous observations suggested that paracoccin (PCN), a multidomain fungal protein with both lectin and enzymatic activities, may be a potential P. brasiliensis virulence factor. To explore this, we used AsRNA and ATMT methodology to obtain three independent PCN-silenced P. brasiliensis yeast strains (AsPCN1, AsPCN2, and AsPCN3) and characterized them with regard to P. brasiliensis biology and pathogenicity. AsPCN1, AsPCN2, and AsPCN3 showed relative PCN expression levels that were 60%, 40%, and 60% of that of the wild-type (WT) strain, respectively. PCN silencing led to the aggregation of fungal cells, blocked the morphological yeast-to-mycelium transition, and rendered the yeast less resistant to macrophage fungicidal activity. In addition, mice infected with AsPCN1, AsPCN2, and AsPCN3 showed a reduction in fungal burden of approximately 96% compared with those inoculated with the WT strain, which displayed a more extensive destruction of lung tissue. Finally, mice infected with the PCN-silenced yeast strains had lower mortality than those infected with the WT strain. These data demonstrate that PCN acts as a P. brasiliensis contributory virulence factor directly affecting fungal pathogenesis.IMPORTANCE The nonexistence of efficient genetic transformation systems has hampered studies in the dimorphic fungus Paracoccidioides brasiliensis, the etiological agent of the most frequent systemic mycosis in Latin America. The recent development of a method for gene expression knockdown by antisense RNA technology, associated with an Agrobacterium tumefaciens-mediated transformation system, provides new strategies for studying P. brasiliensis Through this technology, we generated yeasts that were silenced for paracoccin (PCN), a P. brasiliensis component that has lectin and enzymatic properties. By comparing the phenotypes of PCN-silenced and wild-type strains of P. brasiliensis, we identified PCN as a virulence factor whose absence renders the yeasts unable to undergo the transition to mycelium and causes a milder pulmonary disease in mice, with a lower mortality rate. Our report highlights the importance of the technology used for P. brasiliensis transformation and demonstrates that paracoccin is a virulence factor acting on fungal biology and pathogenesis.


Assuntos
Proteínas Fúngicas/metabolismo , Inativação Gênica , Lectinas/metabolismo , Paracoccidioides/patogenicidade , Fatores de Virulência/metabolismo , Animais , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Proteínas Fúngicas/genética , Lectinas/genética , Masculino , Camundongos Endogâmicos BALB C , Micélio/citologia , Micélio/crescimento & desenvolvimento , Paracoccidioides/citologia , Paracoccidioides/genética , Paracoccidioides/crescimento & desenvolvimento , Paracoccidioidomicose/microbiologia , Paracoccidioidomicose/patologia , Análise de Sobrevida , Virulência , Fatores de Virulência/genética
5.
Environ Toxicol Chem ; 36(10): 2868-2874, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28402053

RESUMO

Pseudoreplication is a widely discussed topic in the scientific community. Its principal critique concerns the lack of independence in flawed experimental designs and the use of inferential statistics to test the hypothesis of such experiments. Thirty years after its appearance, it remains misunderstood by many researchers, including ecotoxicologists. In the present study, we try to clarify some of its concepts by filling in what seems to be a gap in the terminology of manipulative experiments. We propose the term "experimental medium" to refer strictly to the relevant spatial scale of the experiment to preserve the specificity of the experimental and observational units and to display pseudoreplication as a kind of misinterpretation and/or misanalysis of inferential statistics. A classification of the types of experimental designs in ecotoxicology is offered, and the problems in using inferential statistics in suboptimal designs are discussed. We hope to shed some light on such a classic topic for ecotoxicologists. Environ Toxicol Chem 2017;36:2868-2874. © 2017 SETAC.


Assuntos
Bioensaio , Biomarcadores/análise , Ecotoxicologia , Acetilcolinesterase/metabolismo , Animais , Biomarcadores/metabolismo , Besouros/efeitos dos fármacos , Besouros/metabolismo , Ensaio Cometa , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Malation/toxicidade , Músculos/enzimologia , Projetos de Pesquisa , Peixe-Zebra/fisiologia
6.
Front Microbiol ; 7: 1003, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458431

RESUMO

The fungal human pathogen Paracoccidioides brasiliensis contains paracoccin (PCN), a multi-domain protein that has lectin and N-acetyl-glucosaminidase activities, which account for its effects on the growth and morphogenesis of the fungus and on the activation of host macrophages through its interaction with TLR N-glycans. With the purpose of detailing the knowledge on the effects of PCN on macrophages, we used recombinant PCN expressed in Pichia pastoris (p-rPCN) to stimulate isolated murine peritoneal macrophages. The activation of these cells manifested through the release of high levels of inflammatory mediators, such as nitric oxide, TNF-α, IL-12p40, and IL-6. Furthermore, peritoneal macrophages stimulated with p-rPCN increased the relative expression of STAT1, SOCS3, and iNOS2 mRNA (M1 polarization markers). However, the expression of Arginase-1, Ym-1, and FIZZ1 (M2 polarization markers) remained at basal levels. Interestingly, the observed M1 macrophages' polarization triggered by p-rPCN was abolished in cells obtained from knockout Toll-like receptor-4 mice. In this case, the p-rPCN-induced production of pro-inflammatory mediators was blocked too. These results demonstrate that the classical activation of macrophages induced by paracoccin depends on TLR4. Taken together, the results of our study indicate that paracoccin acts as a TLR agonist able to modulate immunity and exerts biological activities that favor its applicability as an immunotherapeutic agent to combat systemic fungal infections.

7.
PLoS One ; 9(1): e86868, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466272

RESUMO

Spontaneously hypertensive rats (SHR), like patients with sleep apnea, have hypertension, increased sympathetic activity, and increased chemoreceptor drive. We investigated the role of carotid chemoreceptors in cardiovascular responses induced by obstructive apnea in awake SHR. A tracheal balloon and vascular cannulas were implanted, and a week later, apneas of 15 s each were induced. The effects of apnea were more pronounced in SHR than in control rats (Wistar Kyoto; WKY). Blood pressure increased by 57±3 mmHg during apnea in SHR and by 28±3 mmHg in WKY (p<0.05, n = 14/13). The respiratory effort increased by 53±6 mmHg in SHR and by 34±5 mmHg in WKY. The heart rate fell by 209±19 bpm in SHR and by 155±16 bpm in WKY. The carotid chemoreceptors were then inactivated by the ligation of the carotid body artery, and apneas were induced two days later. The inactivation of chemoreceptors reduced the responses to apnea and abolished the difference between SHR and controls. The apnea-induced hypertension was 11±4 mmHg in SHR and 8±4 mmHg in WKY. The respiratory effort was 15±2 mmHg in SHR and 15±2 mmHg in WKY. The heart rate fell 63±18 bpm in SHR and 52±14 bpm in WKY. Similarly, when the chemoreceptors were unloaded by the administration of 100% oxygen, the responses to apnea were reduced. In conclusion, arterial chemoreceptors contribute to the responses induced by apnea in both strains, but they are more important in SHR and account for the exaggerated responses of this strain to apnea.


Assuntos
Sistema Cardiovascular/fisiopatologia , Corpo Carotídeo/fisiologia , Células Quimiorreceptoras/metabolismo , Hipertensão/etiologia , Síndromes da Apneia do Sono/complicações , Animais , Comportamento Animal , Pressão Sanguínea , Frequência Cardíaca , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Oxigênio/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Síndromes da Apneia do Sono/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA