Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 13(12): e0207863, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30550601

RESUMO

The stalk apoplast fluid of sugarcane contains different sugars, organic acids and amino acids that may supply the demand for carbohydrates by endophytic bacteria including diazotrophs P. tropica (syn. B. tropica) strain Ppe8, isolated from sugarcane, is part of the bacterial consortium recommended as inoculant to sugarcane. However, little information has been accumulated regarding this plant-bacterium interaction considering that it colonizes internal sugarcane tissues. Here, we made use of the RNA-Seq transcriptomic analysis to study the influence of sugarcane stalk apoplast fluid on Ppe8 gene expression. The bacterium was grown in JMV liquid medium (100 ml), divided equally and then supplemented with 50 ml of fresh JMV medium or 50 ml of apoplast fluid extracted from sugarcane variety RB867515. Total RNA was extracted 2 hours later, the rRNAs were depleted and mRNAs used to construct libraries to sequence the fragments using Ion Torrent technology. The mapping and statistical analysis were carried out with CLC Genomics Workbench software. The RNA-seq data was validated by RT-qPCR using the reference genes fliP1, paaF, and groL. The data analysis showed that 544 genes were repressed and 153 genes were induced in the presence of apoplast fluid. Genes that induce plant defense responses, genes related to chemotaxis and movements were repressed in the presence of apoplast fluid, indicating that strain Ppe8 recognizes the apoplast fluid as a plant component. The expression of genes involved in bacterial metabolism was regulated (up and down), suggesting that the metabolism of strain Ppe8 is modulated by the apoplast fluid. These results suggest that Ppe8 alters its gene expression pattern in the presence of apoplast fluid mainly in order to use compounds present in the fluid as well as to avoid the induction of plant defense mechanisms. This is a pioneer study showing the role played by the sugarcane apoplast fluid on the global modulation of genes in P. tropica strain Ppe8.


Assuntos
Burkholderiaceae/genética , Burkholderiaceae/metabolismo , Endófitos/genética , Endófitos/metabolismo , Saccharum/metabolismo , Saccharum/microbiologia , Aminoácidos/metabolismo , Transporte Biológico Ativo , Metabolismo dos Carboidratos , Movimento Celular/genética , Parede Celular/genética , Quimiotaxia/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Estruturas Vegetais/metabolismo , Estruturas Vegetais/microbiologia , Transdução de Sinais
2.
Braz. J. Microbiol. ; 49(2): 210-211, Apr.-June 2018.
Artigo em Inglês | VETINDEX | ID: vti-738167

RESUMO

Paraburkholderia tropica (syn Burkholderia tropica) are nitrogen-fixing bacteria commonly found in sugarcane. The Paraburkholderia tropica strain Ppe8 is part of the sugarcane inoculant consortium that has a beneficial effect on yield. Here, we report a draft genome sequence of this strain elucidating the mechanisms involved in its interaction mainly with Poaceae. A genome size of approximately 8.75 Mb containing 7844 protein coding genes distributed in 526 subsystems was de novo assembled with ABySS and annotated by RAST. Genes related to the nitrogen fixation process, the secretion systems (I, II, III, IV, and VI), and related to a variety of metabolic traits, such as metabolism of carbohydrates, amino acids, vitamins, and proteins, were detected, suggesting a broad metabolic capacity and possible adaptation to plant association.(AU)

3.
Braz. j. microbiol ; Braz. j. microbiol;49(2): 210-211, Apr.-June 2018.
Artigo em Inglês | LILACS | ID: biblio-889231

RESUMO

Abstract Paraburkholderia tropica (syn Burkholderia tropica) are nitrogen-fixing bacteria commonly found in sugarcane. The Paraburkholderia tropica strain Ppe8 is part of the sugarcane inoculant consortium that has a beneficial effect on yield. Here, we report a draft genome sequence of this strain elucidating the mechanisms involved in its interaction mainly with Poaceae. A genome size of approximately 8.75 Mb containing 7844 protein coding genes distributed in 526 subsystems was de novo assembled with ABySS and annotated by RAST. Genes related to the nitrogen fixation process, the secretion systems (I, II, III, IV, and VI), and related to a variety of metabolic traits, such as metabolism of carbohydrates, amino acids, vitamins, and proteins, were detected, suggesting a broad metabolic capacity and possible adaptation to plant association.


Assuntos
Genoma Bacteriano , Burkholderiaceae/genética , Endófitos/genética , Proteínas de Bactérias/genética , Análise de Sequência de DNA , Biologia Computacional , Saccharum/microbiologia , Burkholderiaceae/isolamento & purificação , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Endófitos/isolamento & purificação
4.
Braz J Microbiol ; 49(2): 210-211, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29122479

RESUMO

Paraburkholderia tropica (syn Burkholderia tropica) are nitrogen-fixing bacteria commonly found in sugarcane. The Paraburkholderia tropica strain Ppe8 is part of the sugarcane inoculant consortium that has a beneficial effect on yield. Here, we report a draft genome sequence of this strain elucidating the mechanisms involved in its interaction mainly with Poaceae. A genome size of approximately 8.75Mb containing 7844 protein coding genes distributed in 526 subsystems was de novo assembled with ABySS and annotated by RAST. Genes related to the nitrogen fixation process, the secretion systems (I, II, III, IV, and VI), and related to a variety of metabolic traits, such as metabolism of carbohydrates, amino acids, vitamins, and proteins, were detected, suggesting a broad metabolic capacity and possible adaptation to plant association.


Assuntos
Burkholderiaceae/genética , Endófitos/genética , Genoma Bacteriano , Proteínas de Bactérias/genética , Burkholderiaceae/isolamento & purificação , Biologia Computacional , Endófitos/isolamento & purificação , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Saccharum/microbiologia , Análise de Sequência de DNA
5.
Artigo em Inglês | VETINDEX | ID: vti-739156

RESUMO

Abstract Paraburkholderia tropica (syn Burkholderia tropica) are nitrogen-fixing bacteria commonly found in sugarcane. The Paraburkholderia tropica strain Ppe8 is part of the sugarcane inoculant consortium that has a beneficial effect on yield. Here, we report a draft genome sequence of this strain elucidating the mechanisms involved in its interaction mainly with Poaceae. A genome size of approximately 8.75 Mb containing 7844 protein coding genes distributed in 526 subsystems was de novo assembled with ABySS and annotated by RAST. Genes related to the nitrogen fixation process, the secretion systems (I, II, III, IV, and VI), and related to a variety of metabolic traits, such as metabolism of carbohydrates, amino acids, vitamins, and proteins, were detected, suggesting a broad metabolic capacity and possible adaptation to plant association.

6.
Braz. J. Microbiol. ; 48(2): 333-341, abr.-jun. 2017. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-17539

RESUMO

Abiotic stress is one of the major limiting factors for plant development and productivity, which makes it important to identify microorganisms capable of increasing plant tolerance to stress. Dark septate endophytes can be symbionts of plants. In the present study, we evaluated the ability of dark septate endophytes isolates to reduce the effects of water stress in the rice varieties Nipponbare and Piauí. The experiments were performed under gnotobiotic conditions, and the water stress was induced with PEG. Four dark septate endophytes were isolated from the roots of wild rice (Oryza glumaepatula) collected from the Brazilian Amazon. Plant height as well as shoot and root fresh and dry matter were measured. Leaf protein concentrations and antioxidant enzyme activity were also estimated. The dark septate endophytes were grown in vitro in Petri dishes containing culture medium; they exhibited different levels of tolerance to salinity and water stress. The two rice varieties tested responded differently to inoculation with dark septate endophytes. Endophytes promoted rice plant growth both in the presence and in the absence of a water deficit. Decreased oxidative stress in plants in response to inoculation was observed in nearly all inoculated treatments, as indicated by the decrease in antioxidant enzyme activity. Dark septate endophytes fungi were shown to increase the tolerance of rice plants to stress caused by water deficiency.(AU)


Assuntos
Oryza , Endófitos , Desidratação , Fungos , Fatores Abióticos , Água
7.
Braz. j. microbiol ; Braz. j. microbiol;48(2): 333-341, April.-June 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839367

RESUMO

Abstract Abiotic stress is one of the major limiting factors for plant development and productivity, which makes it important to identify microorganisms capable of increasing plant tolerance to stress. Dark septate endophytes can be symbionts of plants. In the present study, we evaluated the ability of dark septate endophytes isolates to reduce the effects of water stress in the rice varieties Nipponbare and Piauí. The experiments were performed under gnotobiotic conditions, and the water stress was induced with PEG. Four dark septate endophytes were isolated from the roots of wild rice (Oryza glumaepatula) collected from the Brazilian Amazon. Plant height as well as shoot and root fresh and dry matter were measured. Leaf protein concentrations and antioxidant enzyme activity were also estimated. The dark septate endophytes were grown in vitro in Petri dishes containing culture medium; they exhibited different levels of tolerance to salinity and water stress. The two rice varieties tested responded differently to inoculation with dark septate endophytes. Endophytes promoted rice plant growth both in the presence and in the absence of a water deficit. Decreased oxidative stress in plants in response to inoculation was observed in nearly all inoculated treatments, as indicated by the decrease in antioxidant enzyme activity. Dark septate endophytes fungi were shown to increase the tolerance of rice plants to stress caused by water deficiency.


Assuntos
Oryza/fisiologia , Oryza/microbiologia , Estresse Fisiológico , Desidratação , Endófitos/crescimento & desenvolvimento , Proteínas de Plantas/análise , Oryza/enzimologia , Brasil , Raízes de Plantas/microbiologia , Endófitos/isolamento & purificação , Antioxidantes/análise
8.
Braz J Microbiol ; 48(2): 333-341, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28089614

RESUMO

Abiotic stress is one of the major limiting factors for plant development and productivity, which makes it important to identify microorganisms capable of increasing plant tolerance to stress. Dark septate endophytes can be symbionts of plants. In the present study, we evaluated the ability of dark septate endophytes isolates to reduce the effects of water stress in the rice varieties Nipponbare and Piauí. The experiments were performed under gnotobiotic conditions, and the water stress was induced with PEG. Four dark septate endophytes were isolated from the roots of wild rice (Oryza glumaepatula) collected from the Brazilian Amazon. Plant height as well as shoot and root fresh and dry matter were measured. Leaf protein concentrations and antioxidant enzyme activity were also estimated. The dark septate endophytes were grown in vitro in Petri dishes containing culture medium; they exhibited different levels of tolerance to salinity and water stress. The two rice varieties tested responded differently to inoculation with dark septate endophytes. Endophytes promoted rice plant growth both in the presence and in the absence of a water deficit. Decreased oxidative stress in plants in response to inoculation was observed in nearly all inoculated treatments, as indicated by the decrease in antioxidant enzyme activity. Dark septate endophytes fungi were shown to increase the tolerance of rice plants to stress caused by water deficiency.


Assuntos
Desidratação , Endófitos/crescimento & desenvolvimento , Oryza/microbiologia , Oryza/fisiologia , Estresse Fisiológico , Antioxidantes/análise , Brasil , Endófitos/isolamento & purificação , Oryza/enzimologia , Proteínas de Plantas/análise , Raízes de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA