Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 337(Pt 3): 118932, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39395764

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Talisia esculenta is a fruit tree commonly found in various regions of Brazil. Its fruit is consumed by the local population, and the leaves are used in infusions within traditional Brazilian medicine. These infusions are employed to alleviate pathological conditions such as rheumatic diseases and hypertension, both of which are strongly linked to oxidative stress and chronic inflammation. The investigation of plant extracts represents a promising field of research, as bioactive compounds abundant in plants exhibit pharmacological effects against a variety of pathological conditions. AIM OF THE STUDY: To investigate the antioxidant, anti-inflammatory activities, and toxicity of the infusion and hydroethanolic extracts of T. esculenta leaves (IF and HF) and fruit peels (IC and HC). MATERIALS AND METHODS: Initially, the cytotoxicity and the effects of the extracts on oxidative stress in RAW264.7 macrophages were assessed through exposure to H2O2, as well as their impact on NO production in RAW264.7 macrophages exposed to LPS. Additionally, the toxicity and ROS production in zebrafish larvae were evaluated using two oxidative stress inducers: H2O2 and CuSO4 combined with ascorbate. RESULTS: The MTT assay indicated that the extracts exhibited low cytotoxicity, with HF and IF demonstrating protective effects against H2O2 exposure. HC reduced NO production in macrophages by 30%. The zebrafish analysis showed that all four T. esculenta extracts (100 µg/mL) were non-toxic, as they did not affect the survival, heart rate, or body size of the animals. Furthermore, all extracts were capable of reducing ROS levels in zebrafish larvae exposed to the H2O2 stressor. Notably, ROS reduction by HF, IF, and HC extracts exceeded 50% compared to the positive control (H2O2 alone). T. esculenta extracts also demonstrated a significant ability to reduce ROS levels in zebrafish larvae exposed to CuSO4, with a 70% reduction observed for leaf extracts and over 30% for fruit peel extracts. CONCLUSION: This study demonstrated that T. esculenta extracts exhibit significant activity against oxidative damage and contain components with anti-inflammatory properties. Among the extracts, those obtained from leaves were the most effective in providing oxidative protection, supporting the traditional use of leaf infusions.

2.
Mar Drugs ; 22(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39330298

RESUMO

The role of oxidative stress in health and homeostasis has generated interest in the scientific community due to its association with cardiovascular and neurodegenerative diseases, cancer, and other diseases. Therefore, extensive research seeks to identify new exogenous antioxidant compounds for supplementation. Polysaccharides are recognized for their antioxidant properties. However, polysaccharide chemical modifications are often necessary to enhance these properties. Therefore, dextran was conjugated with gallic acid (Dex-Gal) and later combined with fucoidan A (FucA) to formulate blends aimed at achieving superior antioxidant activity compared to individual polysaccharides. A factorial design was employed to combine FucA and Dex-Gal in different proportions, resulting in five blends (BLD1, BLD2, BLD3, BLD4, and BLD5). An analysis of surface graphs from in vitro antioxidant tests, including total antioxidant capacity (TAC), reducing power, and hydroxyl radical scavenging, guided the selection of BLD4 as the optimal formulation. Tests on 3T3 fibroblasts under various conditions of oxidative stress induced by hydrogen peroxide revealed that BLD4 provided enhanced protection compared to its isolated components. The BLD4 formulation, resulting from the combination of Dex-Gal and FucA, showed promise as an antioxidant strategy, outperforming its individual components and suggesting its potential as a supplement to mitigate oxidative stress in adverse health conditions.


Assuntos
Antioxidantes , Dextranos , Ácido Gálico , Estresse Oxidativo , Polissacarídeos , Polissacarídeos/farmacologia , Polissacarídeos/química , Ácido Gálico/farmacologia , Ácido Gálico/química , Dextranos/química , Dextranos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Células 3T3 , Peróxido de Hidrogênio , Fibroblastos/efeitos dos fármacos
3.
Nat Prod Res ; : 1-9, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041623

RESUMO

Lippia origanoides essential oil (LOEO) is extensively utilised as food preservative due to its antioxidant and antibacterial activities. In this study, the antioxidant and anti-ageing effects of LOEO was investigated in vivo using the nematode Caenorhabditis elegans. The gas chromatography-mass spectrometry analysis indicated that the main components of LOEO are carvacrol and thymol. LOEO treatment improved physiological parameters such as pharyngeal pumping, locomotion and body size indicating that is not toxic to C. elegans. LOEO treatment showed antioxidant effect in C. elegans by reducing endogenous ROS (Reactive Oxygen Species) production and increasing their survival under oxidative stress. Finally, LOEO treatment significantly extended C. elegans lifespan and alleviated the paralysis induced by ß-amyloid peptide overexpression in the muscle. This work demonstrates for the first time LOEO antioxidant and anti-ageing properties on an organism level providing a valuable proof of principle to support further studies in the development of nutraceuticals or antioxidant phytotherapy.

4.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36290635

RESUMO

Obesity is a global public health problem that is associated with oxidative stress. One of the strategies for the treatment of obesity is the use of drugs; however, these are expensive and have numerous side effects. Therefore, the search for new alternatives is necessary. Baccharis trimera is used in Brazilian folk medicine for the treatment of obesity. Here, B. trimera leaf extract (BT) showed antioxidant activity in seven in vitro tests, and it was not toxic to 3T3 murine fibroblasts or Caenorhabditis elegans. Furthermore, BT reduces the intracellular amount of reactive oxygen species and increases C. elegans survival. Moreover, these effects were not dependent on transcription factors. The inhibition of fat accumulation by BT in the C. elegans model was also investigated. BT reduced lipid accumulation in animals fed diets without or with high amount of glucose. Furthermore, it was observed using RNA interference (iRNA) that BT depends on the transcription factor NHR-49 to exert its effect. Phytochemical analysis of BT revealed rutin, hyperoside, and 5-caffeoylquinic acid as the main BT components. Thus, these data demonstrate that BT has antioxidant and anti-obesity effects. However, further studies should be conducted to understand the mechanisms involved in its action.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA