Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Plant Res ; 135(2): 235-245, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35150366

RESUMO

In mixed-ploidy populations, newly formed polyploids initially occur at low frequencies when compared to diploids. However, polyploidy may lead to morphological and phenological changes, which promote reproductive isolation and favor polyploid establishment and reproductive success. Additionally, previous studies have shown that polyploidy can confer some adaptive advantages to organisms in stressful environments. Here, we investigate variation in reproductive phenology, floral traits and reproductive success between diploid and autotetraploid trees of Libidibia ferrea (Mart. Ex Tul.) L.P. Queiroz (Leguminosae) in a mixed tropical urban population, a stressful environment. We assessed ploidy levels, flowering and fruiting phenology, flowering synchrony, floral and reproductive biology, pollination and fruit and seed set. We tested the hypothesis that autotetraploid individuals have a higher frequency of pollinators and higher fruit and seed set per inflorescence (as a proxy of reproductive success) than diploids in an urban green space. Libidibia ferrea is a good model to test our hypothesis because it is self-incompatible (i.e. relies on pollinators to set fruits). In the urban ecosystem studied, we found that diploids flowered for 6-7 months/year and autotetraploids for 3-5 months/year. Flowering synchrony was low between and within cytotypes and even though autotetraploids and diploids exhibited some overlap in flowering period, diploids flowered alone for 2-3 months. Autotetraploids had significantly more flowers per inflorescences, larger flowers and larger pollen grains (as expected for polyploids), but also a higher frequency of visits by legitimate pollinators including two exclusive ones, and higher fruit and seed set per inflorescence when compared to diploids, despite having a shorter flowering period. Our findings reveal some advantages for polyploids over their related diploids in a tropical urban green space. Also, our results highlight the need for more studies that seek to understand abiotic mechanisms affecting reproductive output of polyploids in urban ecosystems.


Assuntos
Diploide , Fabaceae , Polinização , Ecossistema , Fabaceae/genética , Flores/anatomia & histologia , Flores/genética , Frutas/genética , Humanos , Reprodução , Árvores/genética , População Urbana
2.
Ambio ; 50(4): 884-900, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33247414

RESUMO

Urbanization has rapidly increased in recent decades and the negative effects on biodiversity have been widely reported. Urban green areas can contribute to improving human well-being, maintaining biodiversity, and ecosystem services (e.g. pollination). Here we examine the evolution of studies on plant-pollinator interactions in urban ecosystems worldwide, reviewing also research funding and policy actions. We documented a significant increase in the scientific production on the theme in recent years, especially in the temperate region; tropical urban ecosystems are still neglected. Plant-pollinator interactions are threatened by urbanization in complex ways, depending on the studied group (plant or pollinator [generalist or specialist]) and landscape characteristics. Several research opportunities emerge from our review. Research funding and policy actions to pollination/pollinator in urban ecosystems are still scarce and concentrated in developed countries/temperate regions. To make urban green spaces contribute to the maintenance of biodiversity and the provision of ecosystem services, transdisciplinary approaches (ecological-social-economic-cultural) are needed.


Assuntos
Ecossistema , Polinização , Biodiversidade , Humanos , Políticas , Urbanização
3.
Sci Total Environ ; 704: 135240, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31812426

RESUMO

Anthropogenic disturbance and climate change are major threats to biodiversity persistence and functioning of many tropical ecosystems. Although increases in the intensity of anthropogenic disturbance and climate change are associated with reduced taxonomic, phylogenetic and functional diversities of several organisms, little is known about how such pressures interfere with the distribution of plant reproductive traits in seasonally dry tropical forests. Here we test the hypothesis that individual and combined effects of increasing chronic anthropogenic disturbance and water deficit negatively affect the richness, abundance and diversity of specialized reproductive strategies of native woody plants in the Caatinga dry forest. This study was carried out at the Catimbau National Park, northeastern Brazil (62,294 ha). Chronic anthropogenic disturbance intensity was measured through different sources of disturbance (cattle/goat herbivory, wood extraction, and other people pressures). Water deficit data was obtained from hydrological maps and used as a proxy of aridity. We constructed generalized linear models and selected best-supported models for richness, abundance and functional diversity of reproductive traits. We documented that richness and abundance of plants with certain reproductive traits, regardless the specialization, can increase (in 18 out of the 49 trait categories analyzed; e.g. obligatory cross-pollination in response to increases in aridity and wood extraction), be impaired (in 20 categories; e.g. pollination by Sphingids/beetles with increase in aridity), or remain unchanged (in 21 categories; e.g. pollination by vertebrates with increases in chronic anthropogenic disturbance and aridity) with higher disturbance and aridity. There were combined effects of chronic anthropogenic disturbance and aridity on the richness of plants in nine traits (e.g. pollen flowers; dioecious and self-incompatible plants). Aridity affected 40% of the reproductive traits, while chronic anthropogenic disturbance affected 35.5%. The functional diversity of reproductive traits was affected only by disturbance. Changes in plant community structure promoted by chronic anthropogenic disturbance and aridity will likely threaten plant-animal interactions, thereby compromising the functioning of communities and the persistence of biodiversity in the Caatinga.


Assuntos
Mudança Climática , Florestas , Plantas , Brasil , Ecossistema , Agricultura Florestal , Herbivoria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA