RESUMO
The quality of zein (Z)- and zein-tannic acid (ZTA)-coated guavas was monitored throughout 12â¯days of storage. Coated fruit showed lower changes in terms of visual appearance, chlorophyll contents and color. Weight loss, softening, and changes in soluble solids were also decreased by the coatings. The respiration peak as well as H2O2 and superoxide dismutase activity peaks were delayed by the coatings, and the ethylene production was reduced. So, the results were consistent with a slowed down ripening of guavas by the coatings, which was probably related to lowered oxygen permeability of guava skin. ZTA coating was more effective than Z to reduce weight loss, softening, color changes, ethylene production, and oxidative stress. The higher efficiency of ZTA coating was ascribed to zein crosslinking, which probably resulted in decreased gas permeability, promoting lower respiration rates and lower ROS production, slowing down the ripening process, and extending guava stability.
Assuntos
Armazenamento de Alimentos/métodos , Psidium/fisiologia , Taninos/química , Zeína/química , Clorofila/metabolismo , Cor , Reagentes de Ligações Cruzadas/química , Etilenos/metabolismo , Qualidade dos Alimentos , Frutas/fisiologia , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , TemperaturaRESUMO
The soil attributes controlling the CO2, and CH4 emissions were assessed in semiarid mangrove soils (NE-Brazil) under different anthropogenic activities. Soil samples were collected from different mangroves under different anthropogenic impacts, e.g., shrimp farming (Jaguaribe River); urban wastes (Cocó River) and a control site (Timonha River). The sites were characterized according to the sand content; physicochemical parameters (Eh and pH); total organic C; soil C stock (SCS) and equivalent SCS (SCSEQV); total P and N; dissolved organic C (DOC); and the degree of pyritization (DOP). The CO2 and CH4 fluxes from the soils were assessed using static closed chambers. Higher DOC and SCS and the lowest DOP promote greater CO2 emission. The CH4 flux was only observed at Jaguaribe which presented higher DOP, compared to that found in mangroves from humid tropical climates. Semiarid mangrove soils cannot be characterized as important greenhouse gas sources, compared to humid tropical mangroves.