RESUMO
Bacterial pustule (BP), caused by Xanthomonas citri pv. glycines, is an important disease that, under favorable conditions, can drastically affect soybean production. We performed a genome-wide association study (GWAS) with a panel containing Brazilian and American cultivars, which were screened qualitatively and quantitatively against two Brazilian X. citri isolates (IBS 333 and IBS 327). The panel was genotyped using a genotyping by sequencing (GBS) approach, and we identified two main new regions in soybeans associated with X. citri resistance on chromosomes 6 (IBS 333) and 18 (IBS 327), different from the traditional rxp gene located on chromosome 17. The region on chromosome 6 was also detected by QTL mapping using a biparental cross between Williams 82 (R) and PI 416937 (S), showing that Williams 82 has another recessive resistance gene besides rxp, which was also detected in nine BP-resistant ancestors of the Brazilian cultivars (including CNS, S-100), based on haplotype analysis. Furthermore, we identified additional SNPs in strong LD (0.8) with peak SNPs by exploring variation available in WGS (whole genome sequencing) data among 31 soybean accessions. In these regions in strong LD, two candidate resistance genes were identified (Glyma.06g311000 and Glyma.18g025100) for chromosomes 6 and 18, respectively. Therefore, our results allowed the identification of new chromosomal regions in soybeans associated with BP disease, which could be useful for marker-assisted selection and will enable a reduction in time and cost for the development of resistant cultivars.
RESUMO
As plataformas de sequenciamento de nova geração são uma alternativa poderosa para estudos de genômica estrutural e funcional. Na genômica de plantas, os trabalhos com as novas plataformas têm sido destinados ao sequenciamento de transcritos, ressequenciamento ou sequenciamento de novo de genomas plastidiais. Neste trabalho, são detalhadas as tecnologias das plataformas mais utilizadas atualmente, bem como é revisada a aplicação dessas tecnologias na genômica estrutural e funcional de plantas.
The next-generation DNA sequencing technologies are a powerful alternative to studies in structural and functional genomics. In plant genomics studies, the work with these new platforms has been used for the sequencing of transcripts, re-sequencing, and the de novo sequencing of plastid genomes. This research details the technological principles of the next-generation DNA sequencing platforms most used and reviews its application in structural and functional plant genomics.