Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(9): 651, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35931934

RESUMO

Pulp and paper industries are very important for developing the Brazilian economy. During production processes, many effluents are generated with high polluting potential. The objective of this study is to conduct an extensive literature review on the characteristics of effluents and treatment forms adopted by Brazilian mills in this industrial sector. Most consulted studies address raw (without treatment) and secondary (after biological treatment) effluents, considering their main characteristics like pH, chemical and biochemical oxygen demands (COD and BOD, respectively), color, solids, organochlorines, toxicity, estrogenic activity, and phenols. Raw effluents differ considerably in composition, depending on the type of paper produced, the pulping process employed, and other steps, like pulp bleaching. Raw effluent characteristics indicate that this effluent cannot be directly disposed of into water bodies, because it does not comply with federal and state disposal standards. Secondary effluents normally comply with Brazilian legislations, although some studies have reported COD and total phenol concentrations higher than disposal standards, suggesting that additional treatments are necessary. Treated effluent reuse was verified in some Brazilian mills, while its disposal in eucalyptus plantations has been considered a promising alternative for irrigation purposes.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Brasil , Monitoramento Ambiental , Resíduos Industriais/análise , Papel , Fenóis , Poluentes Químicos da Água/análise
2.
Environ Technol ; 40(25): 3297-3307, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29701122

RESUMO

This study investigated an industrial biosludge drying system using hot gases from a coal furnace, seeking to increase the solids content of the biosludge above 50% (w.b.), considered suitable for combustion in biomass boilers. Biosludge was collected from a paper mill activated sludge plant. Biosludge mixtures with eucalyptus chips and eucalyptus bark in two different proportions (15% and 25%) were placed into a drying chamber. Hot gases generated by the furnace, with a flowrate of 0.64 ± 0.02 m3 s-1 at 100 ± 20°C, were applied to the piles through a blowing system. The results demonstrated that the 75% biosludge/25% eucalyptus bark mixture achieved the best drying ratio, increasing the total solids content from 31% to 72%, over a 5-h drying period. Nevertheless, all other treatments involving the addition of a bulking agent achieved solids content above 50%, confirming the positive effect of adding dried material to the sludge. These results indicate a potential use of hot gases that are currently available and released into the atmosphere by paper mills.


Assuntos
Eucalyptus , Esgotos , Dessecação , Resíduos Industriais , Indústrias
3.
PLoS One ; 13(1): e0188732, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29298296

RESUMO

The Multi-Criteria Decision Analysis (MCDA) procedure was used to compare waste management options for kraft pulp mill sludge following its anaerobic digestion. Anaerobic digestion of sludge is advantageous because it produces biogas that may be used to generate electricity, heat and biofuels. However, adequate management of the digested sludge is essential. Landfill disposal is a non-sustainable waste management alternative. Kraft pulp mill digested sludge applied to land may pose risks to the environment and public health if the sludge has not been properly treated. This study is aimed to compare several recycling alternatives for anaerobically digested sludge from kraft pulp mills: land application, landfill disposal, composting, incineration, pyrolysis/gasification, and biofuel production by algae. The MCDA procedure considered nine criteria into three domains to compare digested sludge recycling alternatives in a kraft pulp mill: environmental (CO2 emission, exposure to pathogens, risk of pollution, material and energy recovery), economic (overall costs, value of products) and technical (maintenance and operation, feasibility of implementation). The most suitable management options for digested sludge from kraft pulp mills were found to be composting and incineration (when the latter was coupled with recycling ash to the cement industry). Landfill disposal was the worst option, presenting low performance in feasibility of implementation, risk of pollution, material and energy recovery.


Assuntos
Anaerobiose , Técnicas de Apoio para a Decisão , Esgotos , Indústria Têxtil
4.
Appl Microbiol Biotechnol ; 101(2): 859-870, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27812803

RESUMO

Water generated during oil exploration is chemically complex and contains high concentrations of ammonium and, in some cases, high salinity. The most common way to remove ammonium from effluent is a biological process, which can be performed by different routes and different groups of microorganisms. However, the presence of salts in the effluents could be an inhibiting factor for biological processes, interfering directly with treatment. This study aimed to evaluate changes in the profile of a microbial community involved in the process of ammonium removal when subjected to a gradual increase of salt (NaCl), in which the complete inhibition of the ammonium removal process occurred at 125 g L-1 NaCl. During the sludge acclimatization process, samples were collected and submitted to denaturing gradient gel electrophoresis (DGGE) and massive sequencing of the 16S ribosomal RNA (rRNA) genes. As the salt concentration increased in the reactor, a change in the microbial community was observed by the DGGE band profiles. As a result, there was a reduction in the presence of bacterial populations, and an increase in archaeal populations was found. The sequencing data suggested that ammonium removal in the reactor was carried out by different metabolic routes by autotrophic nitrifying bacteria, such as Nitrosococcus, Nitrosomonas, Nitrosovibrio, Nitrospira, and Nitrococcus; ammonium-oxidizing archaea Candidatus nitrosoarchaeum; ANAMMOX microorganisms, such as Candidatus brocadia, Candidatus kuenenia, and Candidatus scalindua; and microorganisms with the potential to be heterotrophic nitrifying, such as Paracoccus spp., Pseudomonas spp., Bacillus spp., Marinobacter sp., and Alcaligenes spp.


Assuntos
Compostos de Amônio/metabolismo , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biota , Salinidade , Microbiologia da Água , Água/química , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA