Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Bioresour Technol ; 393: 130142, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049020

RESUMO

Microbial engineering is a promising way to produce3-HP using biorenewable substrates such as glycerol. However, theglycerol pathway to obtain 3-HPrequires vitamin B-12, which hinders its economic viability. The present work showed that 3-HP can be efficiently produced from glycerol through the ß-alanine pathway. To develop a cell factory for this purpose, glycerol was evaluated as a substrate and showed more than two-fold improved 3-HP production compared to glucose. Next, the reducing power was modulated by overexpression of an NADP+ -dependent glyceraldehyde-3-phosphate dehydrogenase coupled with CRISPR-based repression of the endogenous gapA gene, resulting in a 91 % increase in 3-HP titer. Finally, the toxicity of 3-HP accumulation was addressed by overexpressing a putative exporter (YohJK). Fed-batch cultivation of the final strain yielded 72.2 g/L of 3-HP and a productivity of 1.64 g/L/h, which are the best results for the ß-alanine pathway and are similar to those found for other pathways.


Assuntos
Escherichia coli , Glicerol , Ácido Láctico/análogos & derivados , Escherichia coli/genética , Escherichia coli/metabolismo , Glicerol/metabolismo , NADP/metabolismo , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/metabolismo , Engenharia Metabólica
2.
N Biotechnol ; 72: 80-88, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36272546

RESUMO

3-Hydroxypropionic acid (3-HP) production from renewable feedstocks is of great interest in efforts to develop greener processes for obtaining this chemical platform. Here we report an engineered E. coli strain for 3-HP production through the ß-alanine pathway. To obtain a new strain capable of producing 3-HP, the pathway was established by overexpressing the enzymes pyruvate aminotransferase, 3-hydroxyacid dehydrogenase, and L-aspartate-1-decarboxylase. Further increase of the 3-HP titer was achieved using evolutionary optimizations of a genome-scale metabolic model of E. coli containing the adopted pathway. From these optimizations, three non-intuitive targets for in vivo assessment were identified: L-alanine aminotransferase and alanine racemase overexpression, and L-valine transaminase knock-out. The implementation of these targets in the production strain resulted in a 40% increase in 3-HP titer. The strain was further engineered to overexpress phosphoenolpyruvate carboxylase, reaching 0.79 ± 0.02 g/L of 3-HP when grown using glucose. Surprisingly, this strain produced 63% more of the desired product when grown using a mixture of glucose and xylose (1:1, C-mol), and gene expression analysis showed that the cellular adjustment to consume xylose had a positive impact on 3-HP accumulation. Fed-batch culture with xylose feeding led to a final titer of 29.1 g/L. These results reinforce the value of computational methods in strain engineering, enabling the design of more efficient strategies to be assessed. Moreover, higher production of 3-HP under a sugar mixture condition points towards the development of bioprocesses based on renewable resources, such as hemicellulose hydrolysates.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Ácido Láctico , Xilose/metabolismo , Glucose/metabolismo
3.
Metab Eng ; 64: 15-25, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33454430

RESUMO

Pyocyanin is a secondary metabolite from Pseudomonas aeruginosa that belongs to the class of phenazines, which are aromatic nitrogenous compounds with numerous biological functions. Besides its antifungal and antimicrobial activities, pyocyanin is a remarkable redox-active molecule with potential applications ranging from the pharma industry to the development of microbial fuel cells. Nevertheless, pyocyanin production has been restricted to P. aeruginosa strains, limiting its practical applicability. In this study, the pyocyanin biosynthetic pathway was engineered for the first time for high level production of this compound in a heterologous host. Escherichia coli cells harboring the nine-gene pathway divided into two plasmids were able to produce and secrete pyocyanin at higher levels than some Pseudomonas aeruginosa strains. The influence of culture and induction parameters were evaluated, and the optimized conditions led to an increase of 3.5-fold on pyocyanin accumulation. Pathway balancing was achieved by testing a set of plasmids with different copy numbers to optimize the expression levels of pyocyanin biosynthetic genes, resulting in a fourfold difference in product titer among the engineered strains. Further improvements were achieved by co-expression of Vitreoscilla hemoglobin Vhb, which relieved oxygen limitations and led to a final titer of 18.8 mg/L pyocyanin. These results show promise to use E. coli for phenazines production, and the engineered strain developed here has the potential to be used in electro-fermentation systems where pyocyanin plays a role as electron-shuttle.


Assuntos
Escherichia coli , Piocianina , Escherichia coli/genética , Engenharia Metabólica , Fenazinas , Pseudomonas aeruginosa/genética , Piocianina/genética
4.
Chemosphere ; 234: 461-470, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31228848

RESUMO

The performances of distinct BDD anodes (boron doping of 100, 500 and 2500 ppm, with sp3/sp2 carbon ratios of 215, 325, and 284, respectively) in the electrochemical degradation of ciprofloxacin - CIP (0.5 L of 50 mg L-1 in 0.10 M Na2SO4, at 25 °C) were comparatively assessed using a recirculating flow system with a filter-press reactor. Performance was assessed by monitoring the CIP and total organic carbon (TOC) concentrations, oxidation intermediates, and antimicrobial activity against Escherichia coli as a function of electrolysis time. CIP removal was strongly affected by the solution pH (kept fixed), flow conditions, and current density; similar trends were obtained independently of the BDD anode used, but the BDD100 anode yielded the best results. Enhanced mass transport was achieved at a low flow rate by promoting the solution turbulence within the reactor. The fastest complete CIP removal (within 20 min) was attained at j = 30 mA cm-2, pH = 10.0, and qV = 2.5 L min-1 + bypass turbulence promotion. TOC removal was practically accomplished only after 10 h of electrolysis, with quite similar performances by the distinct BDD anodes. Five initial oxidation intermediates were identified (263 ≤ m/z ≤ 348), whereas only two terminal oxidation intermediates were detected (oxamic and formic acids). The antimicrobial activity of the electrolyzed CIP solution was almost completely removed within 10 h of electrolysis. The characteristics of the BDD anodes only had a marked effect on the CIP removal rate (best performance by the least-doped anode), contrasting with other data in the literature.


Assuntos
Ciprofloxacina/química , Eletrólise/métodos , Poluentes Químicos da Água/química , Antibacterianos/análise , Antibacterianos/química , Boro , Carbono/análise , Carbono/química , Ciprofloxacina/análise , Diamante , Eletrodos , Escherichia coli/efeitos dos fármacos , Cinética , Oxirredução , Poluentes Químicos da Água/análise
5.
Braz. j. microbiol ; Braz. j. microbiol;45(4): 1117-1129, Oct.-Dec. 2014. tab
Artigo em Inglês | LILACS | ID: lil-741261

RESUMO

Genetically attenuated microorganisms, pathogens, and some commensal bacteria can be engineered to deliver recombinant heterologous antigens to stimulate the host immune system, while still offering good levels of safety. A key feature of these live vectors is their capacity to stimulate mucosal as well as humoral and/or cellular systemic immunity. This enables the use of different forms of vaccination to prevent pathogen colonization of mucosal tissues, the front door for many infectious agents. Furthermore, delivery of DNA vaccines and immune system stimulatory molecules, such as cytokines, can be achieved using these special carriers, whose adjuvant properties and, sometimes, invasive capacities enhance the immune response. More recently, the unique features and versatility of these vectors have also been exploited to develop anti-cancer vaccines, where tumor-associated antigens, cytokines, and DNA or RNA molecules are delivered. Different strategies and genetic tools are constantly being developed, increasing the antigenic potential of agents delivered by these systems, opening fresh perspectives for the deployment of vehicles for new purposes. Here we summarize the main characteristics of the different types of live bacterial vectors and discuss new applications of these delivery systems in the field of vaccinology.


Assuntos
Animais , Humanos , Vacinas Bacterianas/imunologia , Portadores de Fármacos , Infecções Bacterianas/prevenção & controle , Vacinas Bacterianas/genética , Neoplasias/terapia , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
6.
Braz. J. Microbiol. ; 45(4): 1117-1129, Oct.-Dec. 2014. tab
Artigo em Inglês | VETINDEX | ID: vti-27416

RESUMO

Genetically attenuated microorganisms, pathogens, and some commensal bacteria can be engineered to deliver recombinant heterologous antigens to stimulate the host immune system, while still offering good levels of safety. A key feature of these live vectors is their capacity to stimulate mucosal as well as humoral and/or cellular systemic immunity. This enables the use of different forms of vaccination to prevent pathogen colonization of mucosal tissues, the front door for many infectious agents. Furthermore, delivery of DNA vaccines and immune system stimulatory molecules, such as cytokines, can be achieved using these special carriers, whose adjuvant properties and, sometimes, invasive capacities enhance the immune response. More recently, the unique features and versatility of these vectors have also been exploited to develop anti-cancer vaccines, where tumor-associated antigens, cytokines, and DNA or RNA molecules are delivered. Different strategies and genetic tools are constantly being developed, increasing the antigenic potential of agents delivered by these systems, opening fresh perspectives for the deployment of vehicles for new purposes. Here we summarize the main characteristics of the different types of live bacterial vectors and discuss new applications of these delivery systems in the field of vaccinology.


Assuntos
Humanos , Animais , Vacinas Bacterianas/imunologia , Portadores de Fármacos , Infecções Bacterianas/prevenção & controle , Vacinas Bacterianas/genética , Neoplasias/terapia , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
7.
Braz J Microbiol ; 45(4): 1117-29, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25763014

RESUMO

Genetically attenuated microorganisms, pathogens, and some commensal bacteria can be engineered to deliver recombinant heterologous antigens to stimulate the host immune system, while still offering good levels of safety. A key feature of these live vectors is their capacity to stimulate mucosal as well as humoral and/or cellular systemic immunity. This enables the use of different forms of vaccination to prevent pathogen colonization of mucosal tissues, the front door for many infectious agents. Furthermore, delivery of DNA vaccines and immune system stimulatory molecules, such as cytokines, can be achieved using these special carriers, whose adjuvant properties and, sometimes, invasive capacities enhance the immune response. More recently, the unique features and versatility of these vectors have also been exploited to develop anti-cancer vaccines, where tumor-associated antigens, cytokines, and DNA or RNA molecules are delivered. Different strategies and genetic tools are constantly being developed, increasing the antigenic potential of agents delivered by these systems, opening fresh perspectives for the deployment of vehicles for new purposes. Here we summarize the main characteristics of the different types of live bacterial vectors and discuss new applications of these delivery systems in the field of vaccinology.


Assuntos
Vacinas Bacterianas/imunologia , Portadores de Fármacos , Animais , Infecções Bacterianas/prevenção & controle , Vacinas Bacterianas/genética , Humanos , Neoplasias/terapia , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
8.
Protein Expr Purif ; 90(2): 96-103, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23727254

RESUMO

Thermostable microbial lipases are potential candidates for industrial applications such as specialty organic syntheses as well as hydrolysis of fats and oils. In this work, basic biochemical engineering tools were applied to enhance the production of BTL2 lipase cloned in Escherichia coli BL321 under control of the strong temperature-inducible λP(L) promoter. Initially, surface response analysis was used to assess the influence of growth and induction temperatures on enzyme production, in flask experiments. The results showed that temperatures of 30 and 45°C were the most suitable for growth and induction, respectively, and led to an enzyme specific activity of 706,000 U/gDCW. The most promising induction conditions previously identified were validated in fed-batch cultivation, carried out in a 2L bioreactor. Specific enzyme activity reached 770,000 U/gDCW, corresponding to 13,000 U/L of culture medium and a lipase protein concentration of 10.8 g/L. This superior performance on enzyme production was a consequence of the improved response of λP(L) promoter triggered by the high induction temperature applied (45°C). These results point out to the importance of taking into account protein structure and stability to adequately design the recombinant protein production strategy for thermally induced promoters.


Assuntos
Escherichia coli/genética , Temperatura Alta , Lipase/biossíntese , Proteínas de Bactérias , Reatores Biológicos , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/metabolismo , Lipase/genética , Lipase/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Curr Microbiol ; 65(4): 369-74, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22729211

RESUMO

This work reports the cloning, expression, and purification of a 42-kDa fragment of the SpaA protein from Erysipelothrix rhusiopathiae, the main antigenic candidate for a subunit vaccine against swine erysipelas. The use of an auto-induction protocol to improve heterologous protein expression in recombinant Escherichia coli cultures was also investigated. The cellular growth pattern and metabolite formation were evaluated under different induction conditions. The His-tagged protein was over-expressed as inclusion bodies, and was purified by a single chromatography step under denaturing conditions. Auto-induction conditions were shown to be an excellent process strategy, leading to a high level of rSpaA expression (about 25 % of total cellular protein content) in a short period of time.


Assuntos
Antígenos de Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Erysipelothrix/genética , Erisipela Suína/microbiologia , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Proteínas de Bactérias/química , Cromatografia de Afinidade , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Corpos de Inclusão , Peso Molecular , Desnaturação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Suínos , Erisipela Suína/imunologia
10.
Bioprocess Biosyst Eng ; 35(8): 1269-80, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22388741

RESUMO

This work proposes an innovative methodology to control high density fed-batch cultures of E. coli, based on measurements of the concentration of dissolved oxygen and on estimations of the cellular specific growth rate (µ), of the yield of biomass/limiting substrate (Y (xs)) and of the maintenance coefficient (m). The underlying idea is to allow cells to grow according to their metabolic capacity, without the constraints inherent to pre-set growth rates. Cellular concentration was assessed on-line through a capacitance probe. Three configurations of the control system were compared: (1) pre-set value for the three control parameters; (2) continuously updating µ; (3) updating µ, Y (xs) and m. Implementation of an efficient noise filter for the signal of the capacitance probe was essential for a good performance of the control system. The third control strategy, within the framework of an adaptive model-based control, led to the best results, with biomass productivity reaching 9.2 g(DCW)/L/h.


Assuntos
Proteínas de Bactérias/biossíntese , Reatores Biológicos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Modelos Biológicos , Streptococcus pneumoniae/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Consumo de Oxigênio/fisiologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
11.
Bioprocess Biosyst Eng ; 34(7): 891-901, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21479596

RESUMO

One of the most important events in fed-batch fermentations is the definition of the moment to start the feeding. This paper presents a methodology for a rational selection of the architecture of an artificial intelligence (AI) system, based on a neural network committee (NNC), which identifies the end of the batch phase. The AI system was successfully used during high cell density cultivations of recombinant Escherichia coli. The AI algorithm was validated for different systems, expressing three antigens to be used in human and animal vaccines: fragments of surface proteins of Streptococcus pneumoniae (PspA), clades 1 and 3, and of Erysipelothrix rhusiopathiae (SpaA). Standard feed-forward neural networks (NNs), with a single hidden layer, were the basis for the NNC. The NN architecture with best performance had the following inputs: stirrer speed, inlet air, and oxygen flow rates, carbon dioxide evolution rate, and CO2 molar fraction in the exhaust gas.


Assuntos
Inteligência Artificial , Técnicas Bacteriológicas/métodos , Reatores Biológicos , Meios de Cultura/metabolismo , Escherichia coli/metabolismo , Redes Neurais de Computação , Dióxido de Carbono/metabolismo , Contagem de Células/métodos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Fermentação , Cinética , Oxigênio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Vacinas/biossíntese , Vacinas/metabolismo
12.
Bioprocess biosyst. eng ; 34(7): 891-901, Apr 9, 2011.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1060876

RESUMO

One of the most important events in fed-batch fermentations is the definition of the moment to start the feeding. This paper presents a methodology for a rational selection of the architecture of an artificial intelligence (AI)system, based on a neural network committee (NNC),which identifies the end of the batch phase. The AI systemwas successfully used during high cell density cultivations of recombinant Escherichia coli. The AI algorithm wasvalidated for different systems, expressing three antigens to be used in human and animal vaccines: fragments of surface proteins of Streptococcus pneumoniae (PspA), clades 1 and 3, and of Erysipelothrix rhusiopathiae (SpaA). Standard feed-forward neural networks (NNs), with a single hidden layer, were the basis for the NNC. The NN architecture with best performance had the following inputs: stirrer speed, inlet air, and oxygen flow rates, carbon dioxide evolution rate, and CO2 molar fraction in the exhaust gas.


Assuntos
Proteínas Recombinantes/isolamento & purificação , Técnicas de Cultura Celular por Lotes , Contagem de Células/métodos , Reatores Biológicos , Rede Nervosa/crescimento & desenvolvimento
13.
Appl Microbiol Biotechnol ; 79(1): 23-31, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18324397

RESUMO

Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas, was cultivated in a 5-L stirred and aerated bioreactor under different dissolved oxygen tensions (0%, 5%, and 30% of saturation) for evaluation of the influence of oxygen on cell growth as well as on the production of the main antigenic component of the vaccine against erysipelas, a 64-69 kDa protein (SpaA). The microorganism presented different growth profiles for different aeration conditions. However, at the end of the batch cultivations, similar cell concentrations were obtained under the studied conditions. In order to maximize biomass titers and antigen production, the microorganism was cultivated in fed-batch operation mode under aerobic conditions. Under this condition, there was a fivefold increase in biomass production in comparison to the results attained in batch cultivations. To follow up antigen expression, samples collected during batch cultivations were concentrated and treated with choline for antigen extraction. Antigen expression was then assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by murine immunization tests. It was observed a direct influence of oxygen availability upon antigen expression, which is favored in the presence of oxygen. Analysis of the samples collected throughout the fed-batch process also revealed that antigen production is growth associated.


Assuntos
Antígenos de Bactérias/biossíntese , Proteínas de Bactérias/biossíntese , Erysipelothrix/crescimento & desenvolvimento , Erysipelothrix/metabolismo , Consumo de Oxigênio , Aerobiose , Animais , Antígenos de Bactérias/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Vacinas Bacterianas/biossíntese , Vacinas Bacterianas/imunologia , Reatores Biológicos , Meios de Cultura , Eletroforese em Gel de Poliacrilamida , Feminino , Fermentação , Glucose/metabolismo , Ácido Láctico/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA