Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 201: 816-825, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29554628

RESUMO

In this study, the electrochemical degradation process of 5-fluorouracil (5-FU) in aqueous media was performed using a continuous flow reactor in an undivided cell (system I), and in a divided cell with a cationic membrane (Nafion® 424) (system II). In system I, 75% of 5-FU degradation was achieved (50 mg L-1) with a applied current density japp = 150 A m-2, volumetric flow rate qv = 13 L h-1, after 6 h of electrolysis (kapp = 0.004 min-1). The removal efficiency of 5-FU was higher (95%) when the concentration was 5 mg L-1 under the same conditions. Nitrates (22% of initial amount of N), fluorides (27%) and ammonium (10%) were quantified after 6 h of electrolysis. System II, 77% of 5-FU degradation was achieved (50 mg L-1) after 6 h of electrolysis (kapp = 0.004 min-1). The degradation rate of 5-FU was complete when the concentration was 5 mg L-1 under the same conditions. Nitrates (29% of initial amount of N), fluorides (25%) and ammonium (5%) were quantified after 6 h of electrolysis. In addition, the main organic byproducts identified by mass spectroscopy were aliphatic compound with carbonyl and carboxyl functionalities. Due to, the mineralization of 5-FU with acceptable efficiency of 88% found in system II (japp of 200 A m-2), this system seems to be more promising in the cytostatic drug removal. Moreover the efficiency of 5-FU removal in diluted solutions is better in system II than in system I.


Assuntos
Boro/química , Diamante/química , Eletrólise/métodos , Fluoruracila/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Eletrodos , Eletrólise/instrumentação , Fluoruracila/química , Cinética , Oxirredução , Poluentes Químicos da Água/química , Purificação da Água/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA