RESUMO
Researchers in the Global South (GS, developing countries) make valuable contributions to the field of comparative physiology, but face economic and scientific disparities and several unique challenges compared with colleagues in the Global North (developed countries). This Perspective highlights some of the challenges, knowledge gaps and disparities in opportunity faced by GS researchers, especially those at early-career stages. We propose collaborative solutions to help address these issues, and advocate for promoting investment and cultural and societal change for a more inclusive research community. Additionally, we highlight the role of GS researchers in contributing expert knowledge on local biodiversity and the environment; this knowledge can help to shape the future of comparative physiology, allowing us to achieve a better understanding of the evolution of physiological mechanisms and to develop innovative solutions to environmental and biomedical challenges. With this Perspective, we hope to highlight the need to foster a more diverse, equitable and inclusive research landscape in comparative physiology; one that empowers GS scientists to address the global challenges associated with biodiversity loss, climate change and environmental pollution.
Assuntos
Fisiologia Comparada , Pesquisadores , Fisiologia Comparada/tendências , Países em Desenvolvimento , Biodiversidade , Humanos , Animais , Mudança ClimáticaRESUMO
Females and males can exhibit striking differences in body size, relative trait size, physiology and behavior. As a consequence the sexes can have very different rates of whole-body energy use, or converge on similar rates through different physiological mechanisms. Yet many studies that measure the relationship between metabolic rate and body size only pay attention to a single sex (more often males), or do not distinguish between sexes. We present four reasons why explicit attention to energy-use between the sexes can yield insight into the physiological mechanisms that shape broader patterns of metabolic scaling in nature. First, the sexes often differ considerably in their relative investment in reproduction which shapes much of life-history and rates of energy use. Second, males and females share a majority of their genome but may experience different selective pressures. Sex-specific energy profiles can reveal how the energetic needs of individuals are met despite the challenge of within-species genetic constraints. Third, sexual selection often pushes growth and behavior to physiological extremes. Exaggerated sexually selected traits are often most prominent in one sex, can comprise up to 50% of body mass and thus provide opportunities to uncover energetic constraints of trait growth and maintenance. Finally, sex-differences in behavior such as mating-displays, long-distance dispersal and courtship can lead to drastically different energy allocation among the sexes; the physiology to support this behavior can shape patterns of metabolic scaling. The mechanisms underlying metabolic scaling in females, males and hermaphroditic animals can provide opportunities to develop testable predictions that enhance our understanding of energetic scaling patterns in nature.