Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Genes (Basel) ; 12(10)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34680859

RESUMO

In purple carrots, anthocyanin pigmentation can be expressed in the entire root, or it can display tissue specific-patterns. Within the phloem, purple pigmentation can be found in the outer phloem (OP) (also called the cortex) and inner phloem (IP), or it can be confined exclusively to the OP. In this work, the genetic control underlying tissue-specific anthocyanin pigmentation in the carrot root OP and IP tissues was investigated by means of linkage mapping and transcriptome (RNA-seq) and phylogenetic analyses; followed by gene expression (RT-qPCR) evaluations in two genetic backgrounds, an F2 population (3242) and the inbred B7262. Genetic mapping of 'root outer phloem anthocyanin pigmentation' (ROPAP) and inner phloem pigmentation (RIPAP) revealed colocalization of ROPAP with the P1 and P3 genomic regions previously known to condition pigmentation in different genetic stocks, whereas RIPAP co-localized with P3 only. Transcriptome analysis of purple OP (POP) vs. non-purple IP (NPIP) tissues, along with linkage and phylogenetic data, allowed an initial identification of 28 candidate genes, 19 of which were further evaluated by RT-qPCR in independent root samples of 3242 and B7262, revealing 15 genes consistently upregulated in the POP in both genetic backgrounds, and two genes upregulated in the POP in specific backgrounds. These include seven transcription factors, seven anthocyanin structural genes, and two genes involved in cellular transport. Altogether, our results point at DcMYB7, DcMYB113, and a MADS-box (DCAR_010757) as the main candidate genes conditioning ROPAP in 3242, whereas DcMYB7 and MADS-box condition RIPAP in this background. In 7262, DcMYB113 conditions ROPAP.


Assuntos
Antocianinas/metabolismo , Daucus carota/metabolismo , Perfilação da Expressão Gênica , Floema/metabolismo , Pigmentos Biológicos/metabolismo , Raízes de Plantas/metabolismo , Daucus carota/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reação em Cadeia da Polimerase em Tempo Real
2.
Theor Appl Genet ; 132(9): 2485-2507, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31144001

RESUMO

KEY MESSAGE: Inheritance, QTL mapping, phylogenetic, and transcriptome (RNA-Seq) analyses provide insight into the genetic control underlying carrot root and leaf tissue-specific anthocyanin pigmentation and identify candidate genes for root phloem pigmentation. Purple carrots can accumulate large quantities of anthocyanins in their root tissues, as well as in other plant parts. This work investigated the genetic control underlying tissue-specific anthocyanin pigmentation in the carrot root phloem and xylem, and in leaf petioles. Inheritance of anthocyanin pigmentation in these three tissues was first studied in segregating F2 and F4 populations, followed by QTL mapping of phloem and xylem anthocyanin pigments (independently) onto two genotyping by sequencing-based linkage maps, to reveal two regions in chromosome 3, namely P1 and P3, controlling pigmentation in these three tissues. Both P1 and P3 condition pigmentation in the phloem, with P3 also conditioning pigmentation in the xylem and petioles. By means of linkage mapping, phylogenetic analysis, and comparative transcriptome (RNA-Seq) analysis among carrot roots with differing purple pigmentation phenotypes, we identified candidate genes conditioning pigmentation in the phloem, the main tissue influencing total anthocyanin levels in the root. Among them, a MYB transcription factor, DcMYB7, and two cytochrome CYP450 genes with putative flavone synthase activity were identified as candidates regulating both the presence/absence of pigmentation and the concentration of anthocyanins in the root phloem. Concomitant expression patterns of DcMYB7 and eight anthocyanin structural genes were found, suggesting that DcMYB7 regulates transcription levels in the latter. Another MYB, DcMYB6, was upregulated in specific purple-rooted samples, suggesting a genotype-specific regulatory activity for this gene. These data contribute to the understanding of anthocyanin regulation in the carrot root at a tissue-specific level and maybe instrumental for improving carrot nutritional value.


Assuntos
Antocianinas/genética , Daucus carota/genética , Pigmentação/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Locos de Características Quantitativas , Antocianinas/metabolismo , Cromossomos de Plantas , Cor , Daucus carota/crescimento & desenvolvimento , Daucus carota/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
3.
Am J Bot ; 100(5): 930-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23594914

RESUMO

PREMISE OF THE STUDY: Analyses of genetic structure and phylogenetic relationships illuminate the origin and domestication of modern crops. Despite being an important worldwide vegetable, the genetic structure and domestication of carrot (Daucus carota) is poorly understood. We provide the first such study using a large data set of molecular markers and accessions that are widely dispersed around the world. • METHODS: Sequencing data from the carrot transcriptome were used to develop 4000 single nucleotide polymorphisms (SNPs). Eighty-four genotypes, including a geographically well-distributed subset of wild and cultivated carrots, were genotyped using the KASPar assay. • KEY RESULTS: Analysis of allelic diversity of SNP data revealed no reduction of genetic diversity in cultivated vs. wild accessions. Structure and phylogenetic analysis indicated a clear separation between wild and cultivated accessions as well as between eastern and western cultivated carrot. Among the wild carrots, those from Central Asia were genetically most similar to cultivated accessions. Furthermore, we found that wild carrots from North America were most closely related to European wild accessions. • CONCLUSIONS: Comparing the genetic diversity of wild and cultivated accessions suggested the absence of a genetic bottleneck during carrot domestication. In conjunction with historical documents, our results suggest an origin of domesticated carrot in Central Asia. Wild carrots from North America were likely introduced as weeds with European colonization. These results provide answers to long-debated questions of carrot evolution and domestication and inform germplasm curators and breeders on genetic substructure of carrot genetic resources.


Assuntos
Agricultura , Daucus carota/genética , Filogenia , Polimorfismo de Nucleotídeo Único , África do Norte , Ásia , DNA de Plantas/genética , Europa (Continente) , Marcadores Genéticos , Pigmentos Biológicos , América do Sul
4.
Genet. mol. biol ; Genet. mol. biol;28(2): 287-293, 2005. ilus
Artigo em Inglês | LILACS | ID: lil-416300

RESUMO

Two F2 carrot (Daucus carota L.) populations (orange rooted Brasilia x very dark orange rooted High Carotene Mass - HCM cross and the dark orange rooted cultivated variety B493 x white rooted wild carrot Queen Anne's Lace - QAL cross) with very unrelated genetic backgrounds were used to investigate intrinsic factors limiting carotenoid accumulation in carrots by applying phenotypic correlation and path analysis to study the relationships between major root carotenes, root color and several other morphological traits. Most of the correlations between traits were close and agreed in sign between the two populations. Root weight had a moderate to highly significant positive correlation with leaf length, root length and top and middle root diameter. Although phenotypic correlations failed to identify the order of the substrates and products in the carotenoid pathway the correct order of substrates and products (phytoene -> zeta-carotene -> lycopene) was identified in the causal diagram of beta-carotene for the Brasilia x HCM population. Path analysis of beta-carotene synthesis in the B493 x QAL population suggested that selection for root carotenes had little effect on plant morphological traits. Causal model of beta-carotene and lycopene in the B493 x QAL population suggested that phytoene synthesis is the key step limiting the carotenoid pathway in white carrots. Path analysis, first presented by Sewall Wright to study quantitative traits, appears to be a powerful statistical approach for the identification of key compounds in complex pathways.


Assuntos
Carotenoides , Daucus carota/genética , Engenharia Genética , Geranil-Geranildifosfato Geranil-Geraniltransferase , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA