Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Microbiol ; 72(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37929930

RESUMO

Introduction. Intestinal helminths and microbiota share the same anatomical niche during infection and are likely to interact either directly or indirectly. Whether intestinal helminths employ bactericidal strategies that influence their microbial environment is not completely understood.Hypothesis. In the present study, the hypothesis that the adult hookworm Nippostrongylus brasiliensis produces molecules that impair bacterial growth in vitro, is tested.Aim. To investigate the in vitro bactericidal activity of Nippostrongylus brasiliensis against commensal and pathogenic bacteria.Methodology. The bactericidal effect of somatic extract and excretory-secretory products of adult Nippostrongylus brasiliensis on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella pneumoniae) bacteria was assessed using growth assays. Minimum inhibitory concentration and minimum bactericidal concentration assays were performed using excretory-secretory products released from the pathogen.Results. Broad-spectrum in vitro bactericidal activity in excretory-secretory products, but not somatic extract of adult Nippostrongylus brasiliensis was detected. The bactericidal activity of excretory-secretory products was concentration-dependent, maintained after heat treatment, and preserved after repeated freezing and thawing.Conclusion. The results of this study demonstrate that helminths such as Nippostrongylus brasiliensis release molecules via their excretory-secretory pathway that have broad-spectrum bactericidal activity. The mechanisms responsible for this bactericidal activity remain to be determined and further studies aimed at isolating and identifying active bactericidal molecules are needed.


Assuntos
Enteropatias Parasitárias , Nippostrongylus , Animais
2.
PLoS Pathog ; 17(1): e1009286, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497411

RESUMO

Animal-parasitic nematodes have thus far been largely refractory to genetic manipulation, and methods employed to effect RNA interference (RNAi) have been ineffective or inconsistent in most cases. We describe here a new approach for genetic manipulation of Nippostrongylus brasiliensis, a widely used laboratory model of gastrointestinal nematode infection. N. brasiliensis was successfully transduced with Vesicular Stomatitis Virus glycoprotein G (VSV-G)-pseudotyped lentivirus. The virus was taken up via the nematode intestine, RNA reverse transcribed into proviral DNA, and transgene transcripts produced stably in infective larvae, which resulted in expression of the reporter protein mCherry. Improved transgene expression was achieved by incorporating the C. elegans hlh11 promoter and the tbb2 3´-UTR into viral constructs. MicroRNA-adapted short hairpin RNAs delivered in this manner were processed correctly and resulted in partial knockdown of ß-tubulin isotype-1 (tbb-iso-1) and secreted acetylcholinesterase B (ache-B). The system was further refined by lentiviral delivery of double stranded RNAs, which acted as a trigger for RNAi following processing and generation of 22G-RNAs. Virus-encoded sequences were detectable in F1 eggs and third stage larvae, demonstrating that proviral DNA entered the germline and was heritable. Lentiviral transduction thus provides a new means for genetic manipulation of parasitic nematodes, including gene silencing and expression of exogenous genes.


Assuntos
Lentivirus/genética , Nippostrongylus/virologia , RNA Interferente Pequeno/genética , Infecções por Strongylida/parasitologia , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/virologia , Feminino , Inativação Gênica , Larva , Lentivirus/fisiologia , Masculino , Nippostrongylus/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , Ratos , Ratos Sprague-Dawley , Transdução Genética
3.
Int J Parasitol ; 40(14): 1619-28, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20654619

RESUMO

Developmentally arrested infective larvae of strongylid nematodes are activated to resume growth by host-derived cues encountered during invasion of the mammalian host. Exposure of Nippostrongylus brasiliensis infective larvae to elevated temperature (37°C) is sufficient to activate signalling pathways which result in resumption of feeding and protein secretion. This occurs independently of exposure to serum or glutathione, in contrast to the hookworm Ancylostoma caninum, and is not initiated by chemical exsheathment. No qualitative differences in protein secretion were induced by host serum as visualised by two-dimensional SDS-PAGE, although exposure of larvae to an aqueous extract of rat skin did stimulate secretion of a small pre-synthesised bolus of proteins. Infective larvae began feeding after a lag period of 3-4 h at 37°C, reaching a maximum of 90% of the population feeding by 48 h. Neither a membrane permeant analogue of cyclic GMP nor muscarinic acetylcholine receptor agonists stimulated feeding at 20°C, and high concentrations of both compounds inhibited temperature-induced activation. LY294002, an inhibitor of phosphatidylinositol 3-kinase, Akt inhibitor IV, an inhibitor of Akt protein kinase, and ketoconazole, an inhibitor of cytochrome P450, all blocked resumption of feeding and protein secretion at 37°C. Serotonin increased the rate of feeding assessed by uptake of radiolabelled BSA, but could not initiate feeding independently of elevated temperature. Collectively, the data suggest that the early signalling events for larval activation in N. brasiliensis differ substantially from A. caninum, but that they may converge at pathways downstream of phosphatidylinositol 3-kinase involving steroid hormone synthesis.


Assuntos
Ancylostoma/metabolismo , Ancilostomíase/parasitologia , Nippostrongylus/metabolismo , Transdução de Sinais , Infecções por Strongylida/parasitologia , Ancylostoma/genética , Ancylostoma/crescimento & desenvolvimento , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Humanos , Masculino , Nippostrongylus/genética , Nippostrongylus/crescimento & desenvolvimento , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Trends Parasitol ; 20(7): 340-6, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15193566

RESUMO

The thioredoxin and glutathione systems play a central role in thiol-disulfide redox homeostasis in many organisms by providing electrons to essential enzymes, and defence against oxidative stress. These systems have recently been characterized in platyhelminth parasites, and the emerging biochemical scenario is the existence of linked processes with the enzyme thioredoxin glutathione reductase supplying reducing equivalents to both pathways. In contrast to their hosts, conventional thioredoxin reductase and glutathione reductase enzymes appear to be absent. Analysis of published data and expressed-sequence tag databases indicates the presence of linked thioredoxin-glutathione systems in the cytosolic and mitochondrial compartments of these parasites.


Assuntos
Glutationa/metabolismo , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Platelmintos/metabolismo , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Citosol/enzimologia , Citosol/metabolismo , Glutationa/genética , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , NADH NADPH Oxirredutases/genética , Oxirredução , Platelmintos/enzimologia , Platelmintos/genética , Selenocisteína/metabolismo , Tiorredoxinas/genética
5.
Genome Biol ; 5(6): R39, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15186490

RESUMO

BACKGROUND: Parasitism is a highly successful mode of life and one that requires suites of gene adaptations to permit survival within a potentially hostile host. Among such adaptations is the secretion of proteins capable of modifying or manipulating the host environment. Nippostrongylus brasiliensis is a well-studied model nematode parasite of rodents, which secretes products known to modulate host immunity. RESULTS: Taking a genomic approach to characterize potential secreted products, we analyzed expressed sequence tag (EST) sequences for putative amino-terminal secretory signals. We sequenced ESTs from a cDNA library constructed by oligo-capping to select full-length cDNAs, as well as from conventional cDNA libraries. SignalP analysis was applied to predicted open reading frames, to identify potential signal peptides and anchors. Among 1,234 ESTs, 197 (~16%) contain predicted 5' signal sequences, with 176 classified as conventional signal peptides and 21 as signal anchors. ESTs cluster into 742 distinct genes, of which 135 (18%) bear predicted signal-sequence coding regions. Comparisons of clusters with homologs from Caenorhabditis elegans and more distantly related organisms reveal that the majority (65% at P < e-10) of signal peptide-bearing sequences from N. brasiliensis show no similarity to previously reported genes, and less than 10% align to conserved genes recorded outside the phylum Nematoda. Of all novel sequences identified, 32% contained predicted signal peptides, whereas this was the case for only 3.4% of conserved genes with sequence homologies beyond the Nematoda. CONCLUSIONS: These results indicate that secreted proteins may be undergoing accelerated evolution, either because of relaxed functional constraints, or in response to stronger selective pressure from host immunity.


Assuntos
Evolução Molecular , Etiquetas de Sequências Expressas , Proteínas de Helminto/metabolismo , Nippostrongylus/genética , Parasitos/metabolismo , Sinais Direcionadores de Proteínas/genética , Análise de Sequência de Proteína/métodos , Animais , Proteínas de Caenorhabditis elegans/genética , Sequência Conservada/genética , Proteínas de Helminto/genética , Seleção Genética , Homologia de Sequência do Ácido Nucleico , Trans-Splicing/genética
6.
Mol Biochem Parasitol ; 123(2): 125-34, 2002 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-12270628

RESUMO

A third variant of acetylcholinesterase (AChE A) secreted by the parasitic nematode Nippostrongylus brasiliensis has been isolated which shows 63-64% identity to AChE B and AChE C, with a truncated carboxyl terminus and a short internal insertion relative to AChEs from other species. Three of the fourteen aromatic residues which line the active site gorge in Torpedo AChE are substituted by non-aromatic residues (Y70T, W279D and F288M). All three enzymes have 8 cysteine residues in conserved positions, including 6 which have been implicated in disulphide bonds in other AChEs. Phylogenetic analysis suggests that these enzymes form a distinct group which evolved after speciation and are most closely related to ACE-2 of Caenorhabditis elegans. Recombinant AChE A secreted by Pichia pastoris was monomeric and hydrophilic, with a substrate preference for acetylthiocholine and negligible activity against butyrylthiocholine. A model structure of AChE A built from the coordinates of the Torpedo californica AChE suggests that W345 (F331 in Torpedo) limits the docking of butyrylcholine. This model is consistent with mutational analysis of the nematode enzymes. Expression of AChE A is regulated at the transcriptional level independently of the other 2 secreted variants, with maximal expression by fourth stage larvae and young adult worms. These enzymes thus appear to represent an unusual family of AChEs with conserved structural features which operate outside the normal boundaries of known functions in regulation of endogenous neurotransmitter activity.


Assuntos
Acetilcolinesterase/genética , Nippostrongylus/enzimologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Acetiltiocolina/metabolismo , Sequência de Aminoácidos , Animais , Butiriltiocolina/metabolismo , Clonagem Molecular , DNA Complementar , Modelos Moleculares , Dados de Sequência Molecular , Nippostrongylus/genética , Filogenia , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade da Espécie , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA