Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Am J Bot ; 104(11): 1745-1755, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29170246

RESUMO

PREMISE OF THE STUDY: Aphyllon is a clade of holoparasites that includes closely related North American and South American species parasitic on Grindelia. Both Aphyllon (Orobanchaceae) and Grindelia (Asteraceae) have amphitropical disjunctions between North America and South America; however, the timing of these patterns and the processes to explain them are unknown. METHODS: Chronograms for the Orobanchaceae and Grindelia and their relatives were constructed using fossil and secondary calibration points, one of which was based on the inferred timing of horizontal gene transfer from a papilionoid legume into the common ancestor of Orobanche and Phelipanche. Elevated rates of molecular evolution in the Orobanchaceae have hindered efforts to determine reliable divergence time estimates in the absence of a fossil record. However, using a horizontal gene transfer event as a secondary calibration overcomes this limitation. These chronograms were used to reconstruct the biogeography of Aphyllon, Grindelia, and relatives using a DEC+J model implemented in RevBayes. KEY RESULTS: Aphyllon had two amphitropical dispersals from North America to South America, while Grindelia had a single dispersal. The dispersal of the Aphyllon lineage that is parasitic on Grindelia (0.40 Ma) took place somewhat after Grindelia began to diversify in South America (0.93 Ma). Using a secondary calibration based on horizontal gene transfer, we infer more recent divergence dates of holoparasitic Orobancheae than previous studies. CONCLUSIONS: Parallel host-parasite amphitropical disjunctions in Grindelia and Aphyllon illustrate one means by which ecological specialization may result in nonindependent patterns of diversity in distantly related lineages. Although Grindelia and Aphyllon both dispersed to South America recently, Grindelia appears to have diversified more extensively following colonization. More broadly, recent Pleistocene glaciations probably have also contributed to patterns of diversity and biogeography of temperate northern hemisphere Orobancheae. We also demonstrate the utility of using horizontal gene transfer events from well-dated clades to calibrate parasite phylogenies in the absence of a fossil record.


Assuntos
Grindelia/parasitologia , Orobanchaceae/fisiologia , Doenças das Plantas/parasitologia , Dispersão Vegetal , Ecologia , Evolução Molecular , Fósseis , América do Norte , Orobanchaceae/genética , Filogenia , América do Sul
3.
Ann Bot ; 118(6): 1101-1111, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27539600

RESUMO

BACKGROUND AND AIMS: The broomrapes, Orobanche sensu lato (Orobanchaceae), are common root parasites found across Eurasia, Africa and the Americas. All species native to the western hemisphere, recognized as Orobanche sections Gymnocaulis and Nothaphyllon, form a clade that has a centre of diversity in western North America, but also includes four disjunct species in central and southern South America. The wide ecological distribution coupled with moderate taxonomic diversity make this clade a valuable model system for studying the role, if any, of host-switching in driving the diversification of plant parasites. METHODS: Two spacer regions of ribosomal nuclear DNA (ITS + ETS), three plastid regions and one low-copy nuclear gene were sampled from 163 exemplars of Orobanche from across the native geographic range in order to infer a detailed phylogeny. Together with comprehensive data on the parasites' native host ranges, associations between phylogenetic lineages and host specificity are tested. KEY RESULTS: Within the two currently recognized species of O. sect. Gymnocaulis, seven strongly supported clades were found. While commonly sympatric, members of these clades each had unique host associations. Strong support for cryptic host-specific diversity was also found in sect. Nothaphyllon, while other taxonomic species were well supported. We also find strong evidence for multiple amphitropical dispersals from central North America into South America. CONCLUSIONS: Host-switching is an important driver of diversification in western hemisphere broomrapes, where host specificity has been grossly underestimated. More broadly, host specificity and host-switching probably play fundamental roles in the speciation of parasitic plants.


Assuntos
Orobanche/fisiologia , Biodiversidade , América Central , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Ecologia , América do Norte , Orobanche/genética , Filogenia , Plastídeos/genética , Alinhamento de Sequência , Análise de Sequência de DNA , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA