Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Leuk Res Rep ; 12: 100182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31516823

RESUMO

In this work, we analyzed the association between RUNX1 gene expression and the accessibility of BCR3, one of RUNX1 gene breakpoint regions involved in the chromosomal translocation (8;21), a frequent translocation in treatment-related acute myeloid leukemia patients. To this end, we evaluate DNA damage generation induced by in vitro etoposide treatment of KG-1 and Colo320 cells. Our results show that treatment using clinical doses of etoposide for 24 h induces the generation of DNA double strand breaks in the BCR3 of RUNX1 gene in KG-1 cells, but not in Colo320 cells, even though both cell lines express RUNX1 gene. These findings suggest that chromatin accessibility and DNA damage generation at the BCR3 due to treatment with etoposide, is independent of RUNX1 gene expression.

2.
Hum Genomics ; 13(1): 33, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366376

RESUMO

BACKGROUND: RUNX1 gene, a master regulator of the hematopoietic process, participates in pathological conditions as a partner for several genes in chromosomal translocations. One of the most frequent chromosomal translocations found in acute myeloid leukemia patients is the t(8;21), in which RUNX1 and ETO genes recombine. In RUNX1 gene, the DNA double-strand breaks that originate the t(8;21) are generated in the intron 5, specifically within three regions designated as BCR1, BCR2, and BCR3. To date, what determines that these regions are more susceptible to DNA double-strand breaks is not completely clear. In this report, we characterized RUNX1 intron 5, by analyzing DNase-seq and ChIP-seq data, available in the ENCODE Project server, to evaluate DNaseI hypersensitivity and the presence of the epigenetic mark H3K4me3 in 124 and 51 cell types, respectively. RESULTS: Our results show that intron 5 exhibits an epigenetic mark distribution similar to known promoter regions. Moreover, using the online tool YAPP and available CAGE data from the ENCODE Project server, we identified several putative transcription start sites within intron 5 in regions BCR2 and BCR3. Finally, available EST data was analyzed, identifying a novel uncharacterized long non-coding RNA, which is expressed in hematopoietic cell lines as shown by RT-PCR. Our data suggests that the core promoter of the novel long non-coding RNA locates within the region BCR3. CONCLUSION: We identified a novel long non-coding RNA within RUNX1 intron 5, transcribed from a promoter located in the region BCR3, one of the chromosomal breakpoints of RUNX1 gene.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Íntrons/genética , RNA Longo não Codificante/genética , Translocação Genética/genética , Quebras de DNA de Cadeia Dupla , Humanos , Regiões Promotoras Genéticas , RNA Longo não Codificante/isolamento & purificação , Proteína 1 Parceira de Translocação de RUNX1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA