Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 103(2): 889-902, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314836

RESUMO

The circadian clock of Arabidopsis thaliana controls many physiological and molecular processes, allowing plants to anticipate daily changes in their environment. However, developing a detailed understanding of how oscillations in mRNA levels are connected to oscillations in co/post-transcriptional processes, such as splicing, has remained a challenge. Here we applied a combined approach using deep transcriptome sequencing and bioinformatics tools to identify novel circadian-regulated genes and splicing events. Using a stringent approach, we identified 300 intron retention, eight exon skipping, 79 alternative 3' splice site usage, 48 alternative 5' splice site usage, and 350 multiple (more than one event type) annotated events under circadian regulation. We also found seven and 721 novel alternative exonic and intronic events. Depletion of the circadian-regulated splicing factor AtSPF30 homologue resulted in the disruption of a subset of clock-controlled splicing events. Altogether, our global circadian RNA-seq coupled with an in silico, event-centred, splicing analysis tool offers a new approach for studying the interplay between the circadian clock and the splicing machinery at a global scale. The identification of many circadian-regulated splicing events broadens our current understanding of the level of control that the circadian clock has over this co/post-transcriptional regulatory layer.


Assuntos
Processamento Alternativo , Arabidopsis/metabolismo , Ritmo Circadiano , Perfilação da Expressão Gênica , Processamento Alternativo/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Ritmo Circadiano/fisiologia , Genes de Plantas/genética , Transcriptoma
2.
Photochem Photobiol ; 92(1): 126-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26575044

RESUMO

Light modulates plant growth and development to a great extent by regulating gene expression programs. Here, we evaluated the effect of light on alternative splicing (AS) in light-grown Arabidopsis thaliana plants using high-throughput RNA sequencing (RNA-seq). We found that an acute light pulse given in the middle of the night, a treatment that simulates photoperiod lengthening, affected AS events corresponding to 382 genes. Some of these AS events were associated with genes involved in primary metabolism and stress responses, which may help to adjust metabolic and physiological responses to seasonal changes. We also found that several core clock genes showed changes in AS in response to the light treatment, suggesting that light regulation of AS may play a role in clock entrainment. Finally, we found that many light-regulated AS events were associated with genes encoding RNA processing proteins and splicing factors, supporting the idea that light regulates this posttranscriptional regulatory layer through AS regulation of splicing factors. Interestingly, the effect of a red-light pulse on AS of a gene encoding a splicing factor was not impaired in a quintuple phytochrome mutant, providing unequivocal evidence that nonphotosensory photoreceptors control AS in light-grown plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA