Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Reprod Dev ; 87(11): 1133-1140, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33022130

RESUMO

Copulation produces different stimuli in the female reproductive tract in camelids, which lead to ovulation. Expression of ß-nerve growth factor (ß-NGF) and its specific receptor, tropomyosin receptor kinase A (TrKA), was studied comparing the oviductal microenvironment of mated and nonmated llamas. ß-NGF and TrKA were expressed in the llama ampulla, isthmus, and utero-tubal-junction (UTJ), and they were mainly colocalized in the apical region of the oviductal mucosa. A TrKA immunosignal was also found in muscle cells and blood vessels, with the highest mark in UTJ muscle cells of copulated females. Both ß-NGF and TrKA transcripts were expressed in the three oviductal segments. Relative TrKA abundance did not differ between mated and nonmated females, but relative ß-NGF abundance was higher in the UTJ of copulated females (p < .05). ß-NGF might not be secreted into the oviductal fluid (OF) since the protein was not found in the OF of mated or nonmated females. Therefore, it can be concluded that the llama oviduct expresses the ß-NGF/TrKA system and that an increase in ß-NGF gene expression in the UTJ 24 h after copulation along with an increase in TrKA protein expression may indicate an important role in the gamete transport and fertilization process in llamas.


Assuntos
Camelídeos Americanos/fisiologia , Copulação/fisiologia , Tubas Uterinas/metabolismo , Regulação da Expressão Gênica , Fator de Crescimento Neural/biossíntese , RNA Mensageiro/biossíntese , Receptor trkA/biossíntese , Animais , Líquidos Corporais/metabolismo , Camelídeos Americanos/genética , Feminino , Fator de Crescimento Neural/genética , RNA Mensageiro/genética , Receptor trkA/genética
2.
Front Vet Sci ; 7: 610597, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33479599

RESUMO

To provide new insights into the mechanisms through which seminal plasma proteins can protect sperm from damage caused during refrigeration, we evaluate the possibility that ß-NGF can contribute to the improvement of sperm quality after cooling. First, ß-NGF was detected in refrigerated sperm and compared with unrefrigerated sperm by western blotting of the proteins adsorbed by sperm, showing that native ß-NGF is still present even 24 h after cooling only as an active form. Then, the effect of exogenous ß-NGF on sperm quality after cooling was evaluated. A total of 12 ejaculates from male llamas (three ejaculates per male), were obtained by electro-ejaculation, diluted 4:1 with buffer Hepes-balanced salt solution and centrifuged at 800 × g for 8 min to remove the seminal plasma. Sperm were suspended in Tris-citrate-fructose-egg yolk diluent for a final concentration of 30 ×106/ml and cooled at 5°C for 24 h. After refrigeration, the extended sperm were equilibrated for 5 min at 37°C and divided into the following subgroups: sperm samples without treatment (control) and sperm samples supplemented with exogenous human ß-NGF (10, 100, and 500 ng/ml). At 5, 30, and 60 min of incubation sperm were evaluated for sperm viability (using eosin/nigrosin stain), sperm motility and vigor (observed under light microscopy), and mitochondrial activity (using the JC-1 fluorescent marker). Vigor data were analyzed with the nonparametric Kruskal-Wallis test. The rest of the variables were analyzed with a mixed models approach. Mean comparisons were performed using Fisher's LSD test with a confidence level of 95%. A principal components analysis was performed to analyze the relationships between variables. Treatment of 24 h cooled sperm with 10 or 100 ng/ml of human ß-NGF increased the percentage of total motility and vigor (p < 0.05). Besides, an incubation time of 60 min would be adequate to improve sperm quality, since all variables are positively related. The significant improvement observed in the motility and vigor of post-refrigerated sperm suggests that supplementation with exogenous ß-NGF may be profitable for the improvement of cooled llama sperm.

3.
Mol Reprod Dev ; 85(12): 934-944, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30328213

RESUMO

ß-Nerve growth factor (ß-NGF) is a seminal plasma element, responsible for inducing ovulation in camelids. The main organ of ß-NGF production remains nondescript. The aims of this study were to (a) characterize gene expression and protein localization of ß-NGF and its main receptor tyrosine kinase receptor A (TrKA) in the llama male reproductive tract, and (b) determine whether the seminal ß-NGF interacts with ejaculated sperm by localizing ß-NGF and TrKA in epididymal, ejaculated, and acrosome-reacted (AR) sperms and, additionally, by identifying ß-NGF presence in sperm-adsorbed proteins (SAP). Both ß-NGF and TrkA transcripts are widely expressed along the male reproductive tract, with a higher expression level of ß-NGF at prostate (p < 0.05). ß-NGF immunolabeling was only positive for prostate, whereas TrKA label was present in epithelial and muscular cells of testis, prostate, bulbourethral glands, and epididymis. Using an immunofluorescent technique, ß-NGF was colocalized with TrKA in the middle piece of ejaculated and AR sperm. However, only TrKA was observed in epididymal sperm indicating that ß-NGF could have a seminal origin. This was also confirmed by the identification of four ß-NGF isoforms in SAP. This study extends the knowledge about the participation of ß-NGF/TrkA in llama reproduction, providing evidence that may have roles in the regulation of sperm physiology.


Assuntos
Camelídeos Americanos/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator de Crescimento Neural/biossíntese , Próstata/metabolismo , Receptor trkA/biossíntese , Espermatozoides/metabolismo , Animais , Epididimo/citologia , Epididimo/metabolismo , Masculino , Próstata/citologia , Espermatozoides/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA