Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-34801941

RESUMO

Coffee is one of the most consumed beverages worldwide. Cafestol is an endogenous coffee diterpene present in raw coffee beans and also found in hot beverages, with several biological activities. However, there is still little information on this molecule after ingestion of coffee infusion. Zebrafish (Danio rerio) is a promising in vivo model for metabolic studies due to the annotation of mammalian orthologs to encode enzymes related to drug metabolism. Experiments using Zebrafish Water Tank (ZWT) model produce more significant number of metabolites for molecular investigation in a cleaner matrix than other classical models, such as purified hepatocytes. This work aimed to investigate the biotransformation of cafestol by the ZWT model using ultra-performance liquid chromatography coupled to hybrid quadrupole-orbitrap high-resolution mass spectrometry equipped with electrospray ionization (UPLC-HRMS) supported by in silico approach using SMARTCyp, Way2Drug and XenoSite Softwares. Twenty-five metabolites of cafestol were proposed by in silico analysis, in which 5 phase I metabolites were confirmed in the ZWT by UPLC and MS/HRMS investigation: 6-hydroxy-cafestol, 6,12-dihydroxy-cafestol, 2-oxo-cafestol, 6-oxo-cafestol and one isomer whose position in the carboxyl group was not determined. These metabolites were observed during 9 h of the experiment, whose contents were associated with the behavioral responses of the fish.


Assuntos
Diterpenos/química , Diterpenos/metabolismo , Peixe-Zebra/metabolismo , Animais , Biotransformação , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Café/química , Café/metabolismo , Simulação por Computador , Espectrometria de Massas , Modelos Animais , Estrutura Molecular
3.
Zebrafish ; 17(2): 104-111, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32096703

RESUMO

Testolactone is a potent steroid aromatase (CYP19A1) inhibitor, and its main effect is a reduction in estradiol and estrone and an increase in testosterone and androstenedione levels. In this work, we evaluated a zebrafish water tank (ZWT) as a model to investigate testolactone biotransformation and the possibility to increase knowledge regarding the applicability of the ZWT on steroid hormone elimination research, as well as on the impact of steroid hormones on the endogenous metabolism of zebrafish. High-resolution mass spectrometry combined with SIEVE software was used to discriminate the peaks of interest based on significant changes in the relative signal intensity of the m/z values between different ZWT experiments. The metabolites, 4,5-dihydrotestolactone and 1,2,4,5-tetrahydrotestolactone, the same metabolites as those described in humans, were detected in ZWT, both in quite similar proportions. The presence of testolactone in the ZWT caused a rise in testosterone and androstenedione in the water tank, similar to that in human serum. These data suggest that, while the concentration of testolactone was high enough to inhibit the aromatase enzyme, an accumulation of androgens in the water occurred, indicating that the ZWT can be considered a model to investigate the impact of steroids on live organisms.


Assuntos
Inibidores da Aromatase/metabolismo , Testolactona/metabolismo , Peixe-Zebra/metabolismo , Animais , Biotransformação , Hormônios Esteroides Gonadais , Testolactona/análogos & derivados
4.
Drug Test Anal ; 10(11-12): 1657-1669, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30341930

RESUMO

Zebrafish (Danio rerio) water tank (ZWT) approach was investigated as an alternative model for metabolism studies based on six different experiments with four model compounds. Sibutramine was applied for the multivariate optimization of ZWT conditions, also for the comparison of the metabolism among ZWT, humans and mice, beyond for the role of CYP2B6 in ZWT. After the optimization, 18 fish and 168 hours of experiments is the minimum requirement for a relevant panel of biotransformation products. A comparison among the species resulted in the observation of the same hydroxylated metabolites, with differences in metabolites concentration ratio. However, the ZWT allowed tuning of the conditions to obtain a specific metabolic profile, depending on the need. In addition, by utilizing CYP2B6 inhibition, a relevant ZWT pathway for the demethylation of drugs was determined. The stereospecificity of the ZWT metabolism was investigated using selegiline and no racemization or inversion transformations were observed. Moreover, the investigation of metabolism of cannabimimetics was performed using JWH-073 and the metabolites observed are the same described for humans, except for the hydroxylation at the indol group, which was explained by the absence of CYP2C9 orthologs in zebrafish. Finally, hexarelin was used as a model to evaluate studies by ZWT for drugs with low stability. As a result, hexarelin displays a very fast metabolization in ZWT conditions and all the metabolites described for human were observed in ZWT. Therefore, the appropriate conditions, merits, and relevant limitations to conduct ZWT experiments for the investigation of drug metabolism are described.


Assuntos
Preparações Farmacêuticas/metabolismo , Peixe-Zebra/metabolismo , Adulto , Animais , Antidepressivos/metabolismo , Antidepressivos/urina , Biotransformação , Ciclobutanos/metabolismo , Ciclobutanos/urina , Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Feminino , Humanos , Hidroxilação , Indóis/metabolismo , Indóis/urina , Masculino , Camundongos , Modelos Animais , Naftalenos/metabolismo , Naftalenos/urina , Oligopeptídeos/metabolismo , Oligopeptídeos/urina , Preparações Farmacêuticas/urina , Selegilina/metabolismo , Selegilina/urina , Peixe-Zebra/urina , Proteínas de Peixe-Zebra/metabolismo
5.
Drug Test Anal ; 9(11-12): 1685-1694, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28987069

RESUMO

One of the greatest challenges in anti-doping science is the large number of substances available and the difficulty in finding the best analytical targets to detect their misuse. Therefore, metabolism studies involving prohibited substances are fundamental. However, metabolism studies in humans could face an important ethical bottleneck, especially for non-approved substances. An emerging model for metabolism assessment is the zebrafish, due to its genetic similarities with humans. In the present study, the ability of adult zebrafish to produce metabolites of sibutramine and stanozolol, substances with a well-known metabolism that are widely used as doping agents in sports, was evaluated. They represent 2 of the most abused classes of doping agents, namely, stimulants and anabolic steroids. These are classes that have been receiving attention because of the upsurge of synthetic analogues, for which the side effects in humans have not been assessed. The samples collected from the zebrafish tank water were hydrolysed, extracted by solid-phase extraction, and analysed by liquid chromatography with high resolution mass spectrometry (LC-HRMS). Adult zebrafish could produce several sibutramine and stanozolol metabolites, including demethylated, hydroxylated, dehydroxylated, and reduced derivatives, all of which have already been detected in human urine. This study demonstrates that adult zebrafish can absorb, oxidise, and excrete several metabolites in a manner similar to humans. Therefore, adult zebrafish seem to be a very promising tool to study human-like metabolism when aiming to find analytical targets for doping control. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Dopagem Esportivo , Estanozolol/urina , Peixe-Zebra , Adulto , Animais , Cromatografia Líquida , Humanos , Hidroxilação , Extração em Fase Sólida , Estanozolol/química , Espectrometria de Massas em Tandem
6.
Drug Test Anal ; 9(11-12): 1658-1672, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29078043

RESUMO

This paper summarises the results obtained from the doping control analyses performed during the Summer XXXI Olympic Games (August 3-21, 2016) and the XV Paralympic Games (September 7-18, 2016). The analyses of all doping control samples were performed at the Brazilian Doping Control Laboratory (LBCD), a World Anti-Doping Agency (WADA)-accredited laboratory located in Rio de Janeiro, Brazil. A new facility at Rio de Janeiro Federal University (UFRJ) was built and fully operated by over 700 professionals, including Brazilian and international scientists, administrative staff, and volunteers. For the Olympic Games, 4913 samples were analysed. In 29 specimens, the presence of a prohibited substance was confirmed, resulting in adverse analytical findings (AAFs). For the Paralympic Games, 1687 samples were analysed, 12 of which were reported as AAFs. For both events, 82.8% of the samples were urine, and 17.2% were blood samples. In total, more than 31 000 analytical procedures were conducted. New WADA technical documents were fully implemented; consequently, state-of-the-art analytical toxicology instrumentation and strategies were applied during the Games, including different types of mass spectrometry (MS) analysers, peptide, and protein detection strategies, endogenous steroid profile measurements, and blood analysis. This enormous investment yielded one of the largest Olympic legacies in Brazil and South America. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Dopagem Esportivo , Detecção do Abuso de Substâncias/métodos , Brasil , Humanos , Espectrometria de Massas , América do Sul
7.
Subst Use Misuse ; 49(9): 1098-114, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24766455

RESUMO

This article presents the prevalence of stimulant doping among Brazilian athletes, the analytical approaches used, as well as a general evolution of the detectability of the stimulants being used. Results from the Brazilian accredited doping control laboratory are compared with the global statistics disclosed by the World Anti-Doping Agency. The high prevalence of stimulant doping in Brazil can be attributed to several reasons, including "self-administration," a "body-shaping" culture, and the use of nutritional supplements.


Assuntos
Anfetaminas/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Cocaína/administração & dosagem , Dopagem Esportivo/estatística & dados numéricos , Detecção do Abuso de Substâncias/métodos , Atletas , Brasil , Humanos , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA