Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 37: 107225, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34189210

RESUMO

This data article provides spatially explicit data on greenhouse gas (GHG) emissions and mitigation potential at various administrative levels for the whole of Bangladesh. The results arising from analysis of this database are presented in research article "Quantifying opportunities for greenhouse gas emissions mitigation using big data from smallholder crop and livestock farmers across Bangladesh" [1]. We collected crop and livestock management data and associated soil and climatic data from variety of primary and secondary sources outlined below in our methodology. The datafiles on crops and livestock contain model outputs for three greenhouse gases (CO2, CH4 and N2O) and their global warming potential, which are linked, to the information on crop/livestock management, soil and climatic conditions presented in the supplementary data of the associated manuscript. The datafiles on mitigation potential contain district-level annual GHG mitigation potential by 2030 and 2050 segregated by different crops/livestock types and mitigation options. This dataset is useful for Bangladesh's GHG accounting from the agricultural sector, and can be used to update its nationally determined contributions. Administrative level emissions and mitigation potential estimates segregated by crop-livestock types and mitigation options are useful to prioritize agricultural research and development interventions consistent with food security and environmental goals and to organize agricultural extension and support services to better inform farmers on food production and move towards GHG mitigation goals.

2.
Sci Rep ; 11(1): 1564, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452276

RESUMO

Reduction of excess nutrient application and balanced fertilizer use are the key mitigation options in agriculture. We evaluated Nutrient Expert (NE) tool-based site-specific nutrient management (SSNM) in rice and wheat crops by establishing 1594 side-by-side comparison trials with farmers' fertilization practices (FFP) across the Indo-Gangetic Plains (IGP) of India. We found that NE-based fertilizer management can lower global warming potential (GWP) by about 2.5% in rice, and between 12 and 20% in wheat over FFP. More than 80% of the participating farmers increased their crop yield and farm income by applying the NE-based fertilizer recommendation. We also observed that increased crop yield and reduced fertilizer consumption and associated greenhouse gas (GHG) emissions by using NE was significantly influenced by the crop type, agro-ecology, soil properties and farmers' current level of fertilization. Adoption of NE-based fertilizer recommendation practice in all rice and wheat acreage in India would translate into 13.92 million tonnes (Mt) more rice and wheat production with 1.44 Mt less N fertilizer use, and a reduction in GHG of 5.34 Mt CO2e per year over farmers' current practice. Our study establishes the utility of NE to help implement SSNM in smallholder production systems for increasing crop yields and farmers' income while reducing GHG emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA