Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 11(10)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615120

RESUMO

Biopolymeric films with silver sulfadiazine (AgSD) are proposed as an alternative to the occlusive AgSD-containing creams and gauzes, which are commonly used in the treatment of conventional burns. While the recognized cytotoxicity of AgSD has been reported to compromise its use as an antimicrobial drug in pharmaceuticals, this limitation can be overcome by developing sustained-release formulations. Microporous materials as zeolites can be used as drug delivery systems for sustained release of AgSD. The purpose of this work was the development and characterization of chitosan/zeolite composite films to be used as wound dressings. Zeolite was impregnated with AgSD before the production of the composite films. The physicochemical properties of zeolites and the films were evaluated, as well as the antimicrobial activity of the polymeric films and the cytotoxicity of the films in fibroblasts Balb 3T3/c. Impregnated zeolite exhibited changes in FTIR spectra and XRD diffraction patterns, in comparison to non-impregnated composites, which corroborate the results obtained with EDX-SEM. The pure chitosan film was compact and without noticeable defects and macropores, while the film with zeolite was opaquer, more rigid, and efficient against Candida albicans and some gram-negative bacteria. The safety evaluation showed that although the AgSD films present cytotoxicity, they could be used in a concentration-dependent fashion.

2.
Skin Pharmacol Physiol ; 31(1): 1-9, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29131088

RESUMO

The use of sunscreen products is widely promoted by schools, government agencies, and health-related organizations to minimize sunburn and skin damage. In this study, we developed stable solid lipid nanoparticles (SLNs) containing the chemical UV filter octyl methoxycinnamate (OMC). In parallel, we produced similar stable SLNs in which 20% of the OMC content was replaced by the botanical urucum oil. When these SLNs were applied to the skin of human volunteers, no changes in fluorescence lifetimes or redox ratios of the endogenous skin fluorophores were seen, suggesting that the formulations did not induce toxic responses in the skin. Ex vivo (skin diffusion) tests showed no significant penetration. In vitro studies showed that when 20% of the OMC was replaced by urucum oil, there was no reduction in skin protection factor (SPF), suggesting that a decrease in the amount of chemical filter may be a viable alternative for an effective sunscreen, in combination with an antioxidant-rich vegetable oil, such as urucum. There is a strong trend towards increasing safety of sun protection products through reduction in the use of chemical UV filters. This work supports this approach by producing formulations with lower concentrations of OMC, while maintaining the SPF. Further investigations of SPF in vivo are needed to assess the suitability of these formulations for human use.


Assuntos
Lipídeos/química , Nanopartículas/química , Óleos de Plantas/química , Protetores Solares/química , Química Farmacêutica/métodos , Cinamatos/administração & dosagem , Cinamatos/química , Humanos , Permeabilidade/efeitos dos fármacos , Óleos de Plantas/administração & dosagem , Pele/efeitos dos fármacos , Absorção Cutânea/efeitos dos fármacos , Protetores Solares/administração & dosagem , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA