Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 28(1): 1, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862566

RESUMO

Vitamin C or ascorbic acid is an indispensable micronutrient for human health found principally on citrus species such as lemon and orange fruits and vegetables. It was involved in the production of proteins such as collagen. Its biochemical mechanism is related to its antioxidant capacity; however, its function at the cellular level is still unclear. Several theoretical studies about antioxidant and redox mechanisms for ascorbic acid were suggested; however, no derivative was proposed. Thereby, an electronic study of antioxidant capacity for ascorbic acid derivatives was performed using theoretical chemistry at the DFT/ B3LYP/6-311 + + (2d,2p) level of theory. Simplified derivatives show that enol hydroxyls are more important than any other functional group. The vicinal enolic hydroxyl on ß position is more important for antioxidant capacity of ascorbic than hydroxyl on α position. According to our molecular modifications, the keto-alkene compound showed the best values when compared to ascorbic acid in some molecular characteristics. No lactone derivatives have superior application potential as antioxidant when compared with ascorbic acid. Several structures are possible to be proposed and were related to spin density contributions and the increase of chemical stability. New promising structural derivatives related to ascorbic acid can be developed in the future.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Humanos , Lactonas/química , Lactonas/metabolismo , Redes e Vias Metabólicas , Estrutura Molecular , Oxirredução
2.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361017

RESUMO

Glycogen synthase kinase-3 beta (GSK-3ß) is an enzyme pertinently linked to neurodegenerative diseases since it is associated with the regulation of key neuropathological features in the central nervous system. Among the different kinds of inhibitors of this kinase, the allosteric ones stand out due to their selective and subtle modulation, lowering the chance of producing side effects. The mechanism of GSK-3ß allosteric modulators may be considered still vague in terms of elucidating a well-defined binding pocket and a bioactive pose for them. In this context, we propose to reinvestigate and reinforce such knowledge by the application of an extensive set of in silico methodologies, such as cavity detection, ligand 3D shape analysis and docking (with robust validation of corresponding protocols), and molecular dynamics. The results here obtained were consensually consistent in furnishing new structural data, in particular by providing a solid bioactive pose of one of the most representative GSK-3ß allosteric modulators. We further applied this to the prospect for new compounds by ligand-based virtual screening and analyzed the potential of the two obtained virtual hits by quantum chemical calculations. All potential hits achieved will be subsequently tested by in vitro assays in order to validate our approaches as well as to unveil novel chemical entities as GSK-3ß allosteric modulators.


Assuntos
Sítio Alostérico , Glicogênio Sintase Quinase 3 beta/química , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Regulação Alostérica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Fármacos Neuroprotetores/química , Ligação Proteica
3.
J Mol Model ; 27(2): 26, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33410998

RESUMO

Flavonoids are a big class of natural product and have a wide range of biological activities. Some of these applications depend on its antioxidant capacity. Nevertheless, another mechanism can be involved by means of alkylation reaction on α,ß-unsaturated carbonyl system. This study aimed to evaluate the antioxidant capacity and the chemical reactivity among simplified flavonoid derivatives and isoxazolone analogous as Michael system by using B3LYP functional and 6-311 g(d,p) basis set. Frontier molecular orbital, ionization potential (IP), spin density contributions, and Fukui index explain the antioxidant capacity and reactivity index on isoxazolone and its related derivatives. The best contribution at ß-alkene moiety is related to better reactivity of α,ß-unsaturated carbonyl group. A decrease in antioxidant capacity is related to an increase in the chemical reactivity index. The frontier molecular orbitals show that aurone is more reactive than isoxazolone. In accordance with Fukui index, isoxazolone can be better inhibitor as Michael system when compared to flavonoid derivatives. Graphical abstract.


Assuntos
Flavonoides/química , Oxazóis/química , Teoria da Densidade Funcional , Modelos Moleculares
4.
J Biomol Struct Dyn ; 39(9): 3115-3127, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32338151

RESUMO

Adenosine A2A receptor (A2AR) is the predominant receptor in immune cells, where its activation triggers cAMP-mediated immunosuppressive signaling and the underlying inhibition of T cells activation and T cells-induced effects mediated by cAMP-dependent kinase proteins mechanisms. In this study, were used ADME/Tox, molecular docking and molecular dynamics simulations to investigate selective adenosine A2AR agonists as potential anti-inflammatory drugs. As a result, we obtained two promising compounds (A and B) that have satisfactory pharmacokinetic and toxicological properties and were able to interact with important residues of the A2AR binding cavity and during the molecular dynamics simulations were able to keep the enzyme complexed.Communicated by Ramaswamy H. Sarma.


Assuntos
Preparações Farmacêuticas , Agonistas do Receptor Purinérgico P1 , Anti-Inflamatórios/farmacologia , Simulação de Acoplamento Molecular , Receptor A2A de Adenosina
5.
Saudi Pharm J ; 28(7): 819-827, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32647483

RESUMO

Edaravone is a heterocyclic pyrazolone compound. It has pronounced effect against free radicals, however renal and hepatic disorders have been reported. Isoxazolones are considered bioisosteric analogues of pyrazolones and may have comparable properties. Thus, we investigated the structural and electronic influences for edaravone, isoxazolone, and their tautomers on antioxidant process. Structure and tautomerism study among edaravone, isoxazolone and their heterocycles derivatives were related to antioxidant mechanisms by using the hybrid DFT method B3LYP with the basis sets 6-31++G(2d,2p). The C-H tautomer was the most stable and energetically favored among them. Intramolecular N-H-N hydrogen bonds and polar medium were responsible for the low energy differences among all possible tautomers. N-H tautomers in both systems proved to be better antioxidant by SET (single electron transfer), while O-H tautomers were better antioxidant on HAT (homolytic hydrogen atom transfer) mechanism. Theoretical calculation showed that edaravone is more potent than phenylisoxazolone, however, both has similar antioxidant scavenging on experimental DPPH. The carbonyliminic system played a very important role in the antioxidant activity for both studied classes.

6.
Molecules ; 25(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164183

RESUMO

Adenosine Receptor Type 2A (A2AAR) plays a role in important processes, such as anti-inflammatory ones. In this way, the present work aimed to search for compounds by pharmacophore-based virtual screening. The pharmacokinetic/toxicological profiles of the compounds, as well as a robust QSAR, predicted the binding modes via molecular docking. Finally, we used molecular dynamics to investigate the stability of interactions from ligand-A2AAR. For the search for A2AAR agonists, the UK-432097 and a set of 20 compounds available in the BindingDB database were studied. These compounds were used to generate pharmacophore models. Molecular properties were used for construction of the QSAR model by multiple linear regression for the prediction of biological activity. The best pharmacophore model was used by searching for commercial compounds in databases and the resulting compounds from the pharmacophore-based virtual screening were applied to the QSAR. Two compounds had promising activity due to their satisfactory pharmacokinetic/toxicological profiles and predictions via QSAR (Diverset 10002403 pEC50 = 7.54407; ZINC04257548 pEC50 = 7.38310). Moreover, they had satisfactory docking and molecular dynamics results compared to those obtained for Regadenoson (Lexiscan®), used as the positive control. These compounds can be used in biological assays (in vitro and in vivo) in order to confirm the potential activity agonist to A2AAR.


Assuntos
Receptores A2 de Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Humanos , Ligantes , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA