Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 15(11): e0009907, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735450

RESUMO

Zika virus (ZIKV) emerged as an important infectious disease agent in Brazil in 2016. Infection usually leads to mild symptoms, but severe congenital neurological disorders and Guillain-Barré syndrome have been reported following ZIKV exposure. Creating an effective vaccine against ZIKV is a public health priority. We describe the protective effect of an already licensed attenuated yellow fever vaccine (YFV, 17DD) in type-I interferon receptor knockout mice (A129) and immunocompetent BALB/c and SV-129 (A129 background) mice infected with ZIKV. YFV vaccination provided protection against ZIKV, with decreased mortality in A129 mice, a reduction in the cerebral viral load in all mice, and weight loss prevention in BALB/c mice. The A129 mice that were challenged two and three weeks after the first dose of the vaccine were fully protected, whereas partial protection was observed five weeks after vaccination. In all cases, the YFV vaccine provoked a substantial decrease in the cerebral viral load. YFV immunization also prevented hippocampal synapse loss and microgliosis in ZIKV-infected mice. Our vaccine model is T cell-dependent, with AG129 mice being unable to tolerate immunization (vaccination is lethal in this mouse model), indicating the importance of IFN-γ in immunogenicity. To confirm the role of T cells, we immunized nude mice that we demonstrated to be very susceptible to infection. Immunization with YFV and challenge 7 days after booster did not protect nude mice in terms of weight loss and showed partial protection in the survival curve. When we evaluated the humoral response, the vaccine elicited significant antibody titers against ZIKV; however, it showed no neutralizing activity in vitro and in vivo. The data indicate that a cell-mediated response promotes protection against cerebral infection, which is crucial to vaccine protection, and it appears to not necessarily require a humoral response. This protective effect can also be attributed to innate factors, but more studies are needed to strengthen this hypothesis. Our findings open the way to using an available and inexpensive vaccine for large-scale immunization in the event of a ZIKV outbreak.


Assuntos
Vacina contra Febre Amarela/administração & dosagem , Infecção por Zika virus/prevenção & controle , Zika virus/fisiologia , Animais , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Celular , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Vacinação , Células Vero , Febre Amarela/virologia , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/imunologia , Zika virus/genética , Zika virus/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
2.
J Morphol ; 277(7): 957-77, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27151937

RESUMO

This study describes the spermatozoa of 10 of the 15 species of the Neotropical frog genus Pleurodema through transmission electron microscopy. The diversity of oviposition modes coupled with a recent phylogenetic hypothesis of Pleurodema makes it an interesting group for the study of ultrastructural sperm evolution in relation to fertilization environment and egg-clutch structure. We found that Pleurodema has an unusual variability in sperm morphology. The more variable structures were the acrosomal complex, the midpiece, and the tail. The acrosomal complex has all the structures commonly reported in hyloid frogs but with different degree of development of the subacrosomal cone. Regarding the midpiece, the variability is given by the presence or absence of the mitochondrial collar. Finally, the tail is the most variable structure, ranging from single (only axoneme) to more complex (presence of paraxonemal rod, cytoplasmic sheath, and undulating membrane), with the absence of the typical axial fiber present in hyloid frogs, also shared with some other genera of Leiuperinae. J. Morphol. 277:957-977, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Anuros/anatomia & histologia , Filogenia , Espermatozoides/ultraestrutura , Animais , Anuros/classificação , Evolução Biológica , Masculino , Mitocôndrias/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA