Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 4706, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304541

RESUMO

Convulxin (CVX), a C-type lectin-like protein isolated from the venom of the snake species, Crotalus durissus terrificus, stimulates platelet aggregation by acting as a collagen receptor agonist for glycoprotein VI found in the platelets. The effect of CVX on platelets has been studied, but its effect on human peripheral blood mononuclear cells (PBMCs) remains unclear. Given the significance of PBMCs in inflammation, this study explored the effect of CVX on PBMCs, specifically regarding NLRP3 inflammasome activation by assessing cell viability, ability to induce cell proliferation, reactive oxygen species (ROS) and nitric oxide production, interleukin (IL)-2 and IL-10 secretion, NLRP3 complex activation, and the role of C-type lectin-like receptors (CTLRs) in these. CVX was not toxic to PBMCs at the investigated concentrations and did not increase PBMC growth or IL-2 release; however, CVX induced IL-10 release and ROS generation via monocyte activation. It also activated the NLRP3 complex, resulting in IL-1ß induction. Furthermore, the interaction between CVX and Dectin-2, a CTLR, induced IL-10 production. CVX interaction with CTLR has been demonstrated by laminarin therapy. Because of the involvement of residues near the Dectin-2 carbohydrate-recognition site, the generation of ROS resulted in inflammasome activation and IL-1ß secretion. Overall, this work helps elucidate the function of CVX in immune system cells.


Assuntos
Venenos de Crotalídeos , Crotalus , Animais , Venenos de Crotalídeos/química , Crotalus/metabolismo , Humanos , Inflamassomos , Interleucina-10 , Interleucina-1beta , Lectinas Tipo C/metabolismo , Leucócitos Mononucleares/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio
2.
Molecules ; 19(8): 10670-97, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25061720

RESUMO

The Density Functional Theory (DFT) method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with different degrees of cytotoxicity against the human hepatocellular carcinoma HepG2 line. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were employed to select the most important descriptors related to anticancer activity. The significant molecular descriptors related to the compounds with anticancer activity were the ALOGPS_log, Mor29m, IC5 and GAP energy. The Pearson correlation between activity and most important descriptors were used for the regression partial least squares (PLS) and principal component regression (PCR) models built. The regression PLS and PCR were very close, with variation between PLS and PCR of R(2) = ± 0.0106, R(2)(ajust) = ± 0.0125, s = ± 0.0234, F(4,11) = ± 12.7802, Q(2) = ± 0.0088, SEV = ± 0.0132, PRESS = ± 0.4808 and SPRESS = ± 0.0057. These models were used to predict the anticancer activity of eight new artemisinin compounds (test set) with unknown activity, and for these new compounds were predicted pharmacokinetic properties: human intestinal absorption (HIA), cellular permeability (PCaCO2), cell permeability Maden Darby Canine Kidney (PMDCK), skin permeability (P(Skin)), plasma protein binding (PPB) and penetration of the blood-brain barrier (C(Brain/Blood)), and toxicological: mutagenicity and carcinogenicity. The test set showed for two new artemisinin compounds satisfactory results for anticancer activity and pharmacokinetic and toxicological properties. Consequently, further studies need be done to evaluate the different proposals as well as their actions, toxicity, and potential use for treatment of cancers.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Artemisininas/química , Artemisininas/farmacologia , Relação Quantitativa Estrutura-Atividade , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Artemisininas/farmacocinética , Artemisininas/toxicidade , Linhagem Celular , Linhagem Celular Tumoral , Análise por Conglomerados , Células Hep G2 , Humanos , Estrutura Molecular , Permeabilidade , Distribuição Tecidual
3.
Molecules ; 19(1): 367-99, 2013 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-24381053

RESUMO

The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs) and molecular docking were used to investigate the interaction between ligands and the receptor (heme). Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE), the charge on the O11 oxygen atom (QO11), the torsion angle O1-O2-Fe-N2 (D2) and the maximum rate of R/Sanderson Electronegativity (RTe+). These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Artemisininas/química , Artemisininas/farmacologia , Análise por Conglomerados , Heme/química , Modelos Moleculares , Conformação Molecular , Simulação de Acoplamento Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Análise de Componente Principal , Relação Quantitativa Estrutura-Atividade , Eletricidade Estática , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA