Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36421248

RESUMO

Host defense peptides (HDPs) represent an alternative way to address the emergence of antibiotic resistance. Crocodylians are interesting species for the study of these molecules because of their potent immune system, which confers high resistance to infection. Profile hidden Markov models were used to screen the genomes of four crocodylian species for encoded cathelicidins and eighteen novel sequences were identified. Synthetic cathelicidins showed broad spectrum antimicrobial and antibiofilm activity against several clinically important antibiotic-resistant bacteria. In particular, the As-CATH8 cathelicidin showed potent in vitro activity profiles similar to the last-resort antibiotics vancomycin and polymyxin B. In addition, As-CATH8 demonstrated rapid killing of planktonic and biofilm cells, which correlated with its ability to cause cytoplasmic membrane depolarization and permeabilization as well as binding to DNA. As-CATH8 displayed greater antibiofilm activity than the human cathelicidin LL-37 against methicillin-resistant Staphylococcus aureus in a human organoid model of biofilm skin infection. Furthermore, As-CATH8 demonstrated strong antibacterial effects in a murine abscess model of high-density bacterial infections against clinical isolates of S. aureus and Acinetobacter baumannii, two of the most common bacterial species causing skin infections globally. Overall, this work expands the repertoire of cathelicidin peptides known in crocodylians, including one with considerable therapeutic promise for treating common skin infections.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32366718

RESUMO

Two nonamidated host defense peptides named Pin2[G] and FA1 were evaluated against three types of pathogenic bacteria: two (Staphylococcus aureus UPD13 and Pseudomonas aeruginosa UPD3) isolated from diabetic foot ulcer patients, and another (Salmonella enterica serovar Typhimurium [ATCC 14028]) from a commercial collection. In vitro experiments showed that the antimicrobial performance of the synthetic peptides Pin2[G] and FA1 was modest, although FA1 was more effective than Pin2[G]. In contrast, Pin2[G] had superior in vivo anti-infective activity to FA1 in rabbit wound infections by the diabetic foot ulcer pathogens S. aureus UPD13 and P. aeruginosa UPD3. Indeed, Pin2[G] reduced bacterial colony counts of both S. aureus UPD13 and P. aeruginosa UPD3 by >100,000-fold after 48 to 72 h on skin wounds of infected rabbits, while in similar infected wounds, FA1 had no major effects at 72 to 96 h of treatment. Ceftriaxone was equally effective versus Pseudomonas but less effective versus S. aureus infections. Additionally, the two peptides were evaluated in mice against intragastrically inoculated S. enterica serovar Typhimurium (ATCC 14028). Only Pin2[G] at 0.56 mg/kg was effective in reducing systemic (liver) infection by >67-fold, equivalent to the effect of treatment with levofloxacin. Pin2[G] showed superior immunomodulatory activity in increasing chemokine production by a human bronchial cell line and suppressing polyinosinic-polycytidylic acid (poly[I:C])-induced proinflammatory IL-6 production. These data showed that the in vitro antimicrobial activity of these peptides was not correlated with their in vivo anti-infective activity and suggest that other factors such as immunomodulatory activity were more important.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Humanos , Camundongos , Pseudomonas aeruginosa , Coelhos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA