Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38998936

RESUMO

Metabolic alterations are increasingly recognized as important aspects of colorectal cancer (CRC), offering potential avenues for identifying therapeutic targets. Previous studies have demonstrated the cytotoxic potential of bamboo leaf extract obtained from Guadua incana (BLEGI) against HCT-116 colon cancer cells. However, the altered metabolic pathways in these tumor cells remain unknown. Therefore, this study aimed to employ an untargeted metabolomic approach to reveal the metabolic alterations of the endometabolome and exometabolome of HCT-116 cells upon exposure to BLEGI treatment. First, a chemical characterization of the BLEGI was conducted through liquid chromatography coupled with mass spectrometry (LC-MS). Next, we assessed cell viability via MTT and morphological analysis using an immunofluorescence assay against colon cancer cells, and anti-inflammatory activity using an LPS-stimulated macrophage model. Subsequently, we employed LC-MS and proton nuclear magnetic resonance (1H-NMR) to investigate intra- and extracellular changes. Chemical characterization primarily revealed the presence of compounds with a flavone glycoside scaffold. Immunofluorescence analysis showed condensed chromatin and subsequent formation of apoptotic bodies, suggesting cell death by apoptosis. The results of the metabolomic analysis showed 98 differential metabolites, involved in glutathione, tricarboxylic acid cycle, and lipoic acid metabolism, among others. Additionally, BLEGI demonstrated significant nitric oxide (NO) inhibitory capacity in macrophage cells. This study enhances our understanding of BLEGI's possible mechanism of action and provides fresh insights into therapeutic targets for treating this disease.


Assuntos
Neoplasias do Colo , Extratos Vegetais , Folhas de Planta , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Metabolômica/métodos , Metaboloma/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Animais , Células RAW 264.7 , Camundongos , Cromatografia Líquida
2.
Biotechnol Rep (Amst) ; 28: e00559, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33335849

RESUMO

Elicitation of cell suspensions culture is a strategy that could increase the production of secondary metabolites under controlled conditions. This research evaluated the effect of methyl jasmonate-MeJA and salicylic acid-SA as elicitors on the production of metabolites in cell suspensions of P. cumanense. The type of elicitor (MeJA or SA), the concentration of elicitor (10 µM and 100 µM), and time of exposition (3, 12, 24 h) on cell suspension were evaluated. Metabolic profiles of intracellular and extracellular extracts were analyzed by UHPLC-DAD and GC-MS. Differential production of metabolites was dependent on the type of elicitor, its concentration, and the time of exposition. Treatments with 100 µM SA were conducted to high production of 5-hydroxymethylfurfural (6.3 %), phenol (6.5 %), and (Z)-9-octadecenamide (8.8 %). This is the first report of elicitation on cell suspensions in the Piper genus and contributes to understanding the effect of MeJA and SA on metabolite production in plant cell culture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA