Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 177: 116881, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917757

RESUMO

Cutaneous leishmaniasis (CL) is a neglected disease caused by Leishmania parasites. The oral drug miltefosine is effective, but there is a growing problem of drug resistance, which has led to increasing treatment failure rates and relapse of infections. Photodynamic therapy (PDT) combines a light source and a photoactive drug to promote cell death by oxidative stress. Although PDT is effective against several pathogens, its use against drug-resistant Leishmania parasites remains unexplored. Herein, we investigated the potential of organic light-emitting diodes (OLEDs) as wearable light sources, which would enable at-home use or ambulatory treatment of CL. We also assessed its impact on combating miltefosine resistance in Leishmania amazonensis-induced CL in mice. The in vitro activity of OLEDs combined with 1,9-dimethyl-methylene blue (DMMB) (OLED-PDT) was evaluated against wild-type and miltefosine-resistant L. amazonensis strains in promastigote (EC50 = 0.034 µM for both strains) and amastigote forms (EC50 = 0.052 µM and 0.077 µM, respectively). Cytotoxicity in macrophages and fibroblasts was also evaluated. In vivo, we investigated the potential of OLED-PDT in combination with miltefosine using different protocols. Our results demonstrate that OLED-PDT is effective in killing both strains of L. amazonensis by increasing reactive oxygen species and stimulating nitric oxide production. Moreover, OLED-PDT showed great antileishmanial activity in vivo, allowing the reduction of miltefosine dose by half in infected mice using a light dose of 7.8 J/cm2 and 15 µM DMMB concentration. In conclusion, OLED-PDT emerges as a new avenue for at-home care and allows a combination therapy to overcome drug resistance in cutaneous leishmaniasis.


Assuntos
Resistência a Medicamentos , Leishmaniose Cutânea , Camundongos Endogâmicos BALB C , Fosforilcolina , Fotoquimioterapia , Animais , Fotoquimioterapia/métodos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Feminino , Leishmania/efeitos dos fármacos , Macrófagos/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
2.
PLoS One ; 18(9): e0289492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37713373

RESUMO

The emergence of drug resistance in cutaneous leishmaniasis (CL) has become a major problem over the past decades. The spread of resistant phenotypes has been attributed to the wide misuse of current antileishmanial chemotherapy, which is a serious threat to global health. Photodynamic therapy (PDT) has been shown to be effective against a wide spectrum of drug-resistant pathogens. Due to its multi-target approach and immediate effects, it may be an attractive strategy for treatment of drug-resistant Leishmania species. In this study, we sought to evaluate the activity of PDT in vitro using the photosensitizer 1,9-dimethyl methylene blue (DMMB), against promastigotes of two Leishmania amazonensis strains: the wild-type (WT) and a lab induced miltefosine-resistant (MFR) strain. The underlying mechanisms of DMMB-PDT action upon the parasites was focused on the changes in the lipid metabolism of both strains, which was conducted by a quantitative lipidomics analysis. We also assessed the production of ROS, mitochondrial labeling and lipid droplets accumulation after DMMB-PDT. Our results show that DMMB-PDT produced high levels of ROS, promoting mitochondrial membrane depolarization due to the loss of membrane potential. In addition, both untreated strains revealed some differences in the lipid content, in which MFR parasites showed increased levels of phosphatidylcholine, hence suggesting this could also be related to their mechanism of resistance to miltefosine. Moreover, the oxidative stress and consequent lipid peroxidation led to significant phospholipid alterations, thereby resulting in cellular dysfunction and parasite death. Thus, our results demonstrated that DMMB-mediated PDT is effective to kill L. amazonensis MFR strain and should be further studied as a potential strategy to overcome antileishmanial drug resistance.


Assuntos
Leishmania mexicana , Leishmania , Lipidômica , Espécies Reativas de Oxigênio
3.
Photodiagnosis Photodyn Ther ; 42: 103327, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36773756

RESUMO

This study aimed to evaluate, in vitro, the efficacy of photodynamic therapy - PDT using dimethyl methylene blue zinc chloride double salt (DMMB) and red LED light on planktonic cultures of Candida albicans. The tests were performed using the ATCC 90,028 strain grown at 37 °C for 24 h, according to a growth curve of C. albicans. The colonies were resuspended in sterile saline adjusted to a concentration of 2 × 108 cells / mL, with three experimental protocols being tested (Protocol 1, 2 and 3) with a fixed concentration of 750 ɳg/mL obtained through the IC50, and energy density 20 J/cm2. Protocol 1 was carried out using conventional PDT, Protocol 2 was applied double PDT in a single session, and Protocol 3 was applied double PDT in two sessions with a 24 h interval. The results showed logarithmic reductions of 3 (4.252575 ± 0.068526) and 4 logs (2.669533 ± 0.058592) of total fungal load in protocols 3 and 2 respectively in comparison to the Control (6.633547 ± 0.065384). Our results indicated that double application in a single session of PDT was the most effective approach for inhibiting the proliferation of Candida albicans (99.991% inhibition).


Assuntos
Candida albicans , Fotoquimioterapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Luz , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA