Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38338619

RESUMO

Kombucha is a fermented beverage traditionally made from the leaves of Camelia sinensis. The market has drastically expanded recently, and the beverage has become more elaborated with new, healthy food materials and flavors. Pruning and harvesting during coffee production may generate tons of coffee leaves that are discarded although they contain substantial amounts of bioactive compounds, including those found in maté tea and coffee seeds. This study characterized the changes in volatilome, microbial, and sensory profiles of pure and blended arabica coffee leaf tea kombuchas between 3-9 days of fermentation. Acceptance was also evaluated by consumers from Rio de Janeiro (n = 103). Kombuchas (K) were prepared using black tea kombucha starter (BTKS) (10%), sucrose (10%), a symbiotic culture of Bacteria and Yeasts (SCOBY) (2.5%), and a pure coffee leaf infusion (CL) or a 50:50 blend with toasted maté infusion (CL-TM) at 2.5%. The RATA test was chosen for sensory profile characterization. One hundred volatile organic compounds were identified when all infusions and kombucha samples were considered. The potential impact compounds identified in CL K and CL-TM K were: methyl salicylate, benzaldehyde, hexanal, nonanal, pentadecanal, phenylethyl-alcohol, cedrol, 3,5-octadien-2-one, ß-damascenone, α-ionone, ß-ionone, acetic acid, caproic acid, octanoic acid, nonanoic acid, decanoic acid, isovaleric acid, linalool, (S)-dihydroactinidiolide, isoamyl alcohol, ethyl hexanoate, and geranyl acetone. Aroma and flavor descriptors with higher intensities in CL K included fruity, peach, sweet, and herbal, while CL-TM K included additional toasted mate notes. The highest mean acceptance score was given to CL-TM K and CL K on day 3 (6.6 and 6.4, respectively, on a nine-point scale). Arabica coffee leaf can be a co-product with similar fingerprinting to maté and black tea, which can be explored for the elaboration of potentially healthy fermented beverages in food industries.

2.
Foods ; 12(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37509803

RESUMO

Given the substantial world coffee production, tons of coffee fruit cascara rich in bioactive compounds are discarded annually. Using this by-product to produce potentially healthy and acceptable foods is a sustainable practice that aggregates value to coffee production and may help improve people's lives. This study aimed to elaborate kombuchas from coffee cascara tea, evaluate their microbial profile, and monitor the changes in the volatile profile during fermentation, together with sensory attributes and acceptance by consumers from Rio de Janeiro (n = 113). Arabica coffee cascaras from Brazil and Nicaragua were used to make infusions, to which black tea kombucha, a Symbiotic Culture of Bacteria and Yeasts (SCOBY), and sucrose were added. Fermentation of plain black tea kombucha was also monitored for comparison. The volatile profile was analyzed after 0, 3, 6, and 9 days of fermentation via headspace solid phase microextraction GC-MS. A total of 81 compounds were identified considering all beverages, 59 in coffee cascara kombuchas and 59 in the black tea kombucha, with 37 common compounds for both. An increase mainly in acids and esters occurred during fermentation. Despite the similarity to black tea kombucha, some aldehydes, esters, alcohols, and ketones in coffee cascara kombucha were not identified in black tea kombucha. Potential impact compounds in CC were linalool, decanal, nonanal, octanal, dodecanal, ethanol, 2-ethylhexanol, ethyl acetate, ethyl butyrate, ethyl acetate, ß-damascenone, γ-nonalactone, linalool oxide, phenylethyl alcohol, geranyl acetone, phenylacetaldehyde, isoamyl alcohol, acetic acid, octanoic acid, isovaleric acid, ethyl isobutyrate, ethyl hexanoate, and limonene. The mean acceptance scores for cascara kombuchas varied between 5.7 ± 0.53 and 7.4 ± 0.53 on a nine-point hedonic scale, with coffee cascara from three-day Nicaragua kombucha showing the highest score, associated with sweetness and berry, honey, woody, and herbal aromas and flavors. The present results indicate that coffee cascara is a promising by-product for elaboration of fermented beverages, exhibiting exotic and singular fingerprinting that can be explored for applications in the food industry.

3.
Food Funct ; 11(2): 1410-1424, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31970371

RESUMO

The aim of this study was to investigate the effects of coffee species, roast degree and decaffeination on in vitro probiotic bacterial growth, and to identify the major coffee compounds responsible for such effects. Six C. arabica and C. canephora extracts (regular medium and dark roasted and decaffeinated medium roasted), and five bioactive compounds (chlorogenic acid, galactomannan, type 2 arabinogalactan, caffeine and trigonelline) were individually incorporated into a modified low-carbon broth medium-(mMRS), at different concentrations (0.5 to 1.5% soluble coffee and 0.05 to 0.8 mg mL-1 standard solutions). Inulin and fructooligosaccharides (FOS) were used as prebiotic references. MRS and mMRS were used as rich and poor medium controls, respectively. The growth of Lactobacillus rhamnosus GG ATCC 53103-(GG), L. acidophilus LA-5-(LA), Bifidobacterium animalis DN-173010-(BA) and B. animalis subsp. lactis BB12-(BB12), as well as the growth inhibition of non-probiotic Escherichia coli ATCC 25922 were evaluated. Differences in growth between mMRS and treatments (Δlog CFU mL-1) were compared by ANOVA and Tukey's test, and considered when p ≤ 0.05. Overall, after 48 h incubation, the medium roasted arabica coffee extract increased the growth of GG, LA and BA (range: Δlog CFU mL-1 = 0.5 to 1.8), while the dark roasted arabica coffee extract increased BB12 growth (range: Δlog CFU mL-1 = 0.9 to 1.7), in a dose dependent manner. Improved performances of GG, LA and BA were promoted by higher polysaccharides and CGA concentrations, with better performance for Lactobacillus sp. The tested coffee bioactive compounds promoted the poor growth of BB12. Plain caffeine did not promote Bifidobacterium sp. growth and limited the growth of Lactobacillus sp. Regular C. arabica and C. canephora extracts inhibited the growth of E. coli, while the decaffeinated extracts promoted its growth. The present results show that coffee consumption can selectively improve the growth of probiotic strains, thus exerting a prebiotic effect, and show that coffee roasting and decaffeination affect this property and that different strains utilize different coffee components to grow.


Assuntos
Cafeína/farmacologia , Coffea , Café/química , Escherichia coli/efeitos dos fármacos , Lactobacillus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Probióticos , Manipulação de Alimentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA