Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39065740

RESUMO

Malaria is an infectious disease caused by Plasmodium spp. parasites, with widespread drug resistance to most antimalarial drugs. We report the development of two 3D-QSAR models based on comparative molecular field analysis (CoMFA), comparative molecular similarity index analysis (CoMSIA), and a 2D-QSAR model, using a database of 349 compounds with activity against the P. falciparum 3D7 strain. The models were validated internally and externally, complying with all metrics (q2 > 0.5, r2test > 0.6, r2m > 0.5, etc.). The final models have shown the following statistical values: r2test CoMFA = 0.878, r2test CoMSIA = 0.876, and r2test 2D-QSAR = 0.845. The models were experimentally tested through the synthesis and biological evaluation of ten quinoline derivatives against P. falciparum 3D7. The CoMSIA and 2D-QSAR models outperformed CoMFA in terms of better predictive capacity (MAE = 0.7006, 0.4849, and 1.2803, respectively). The physicochemical and pharmacokinetic properties of three selected quinoline derivatives were similar to chloroquine. Finally, the compounds showed low cytotoxicity (IC50 > 100 µM) on human HepG2 cells. These results suggest that the QSAR models accurately predict the toxicological profile, correlating well with experimental in vivo data.

2.
Pharmaceuticals (Basel) ; 17(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38794177

RESUMO

A non-structural SARS-CoV-2 protein, PLpro, is involved in post-translational modifications in cells, allowing the evasion of antiviral immune response mechanisms. In this study, potential PLpro inhibitory drugs were designed using QSAR, molecular docking, and molecular dynamics. A combined QSAR equation with physicochemical and Free-Wilson descriptors was formulated. The r2, q2, and r2test values were 0.833, 0.770, and 0.721, respectively. From the equation, it was found that the presence of an aromatic ring and a basic nitrogen atom is crucial for obtaining good antiviral activity. Then, a series of structures for the binding sites of C111, Y268, and H73 of PLpro were created. The best compounds were found to exhibit pIC50 values of 9.124 and docking scoring values of -14 kcal/mol. The stability of the compounds in the cavities was confirmed by molecular dynamics studies. A high number of stable contacts and good interactions over time were exhibited by the aryl-thiophenes Pred14 and Pred15, making them potential antiviral candidates.

3.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004487

RESUMO

According to the WHO, antimicrobial resistance is among the top 10 threats to global health. Due to increased resistance rates, an increase in the mortality and morbidity of patients has been observed, with projections of more than 10 million deaths associated with infections caused by antibacterial resistant microorganisms. Our research group has developed a new family of pyrimido-isoquinolin-quinones showing antibacterial activities against multidrug-resistant Staphylococcus aureus. We have developed 3D-QSAR CoMFA and CoMSIA studies (r2 = 0.938; 0.895), from which 13 new derivatives were designed and synthesized. The compounds were tested in antibacterial assays against methicillin-resistant Staphylococcus aureus and other bacterial pathogens. There were 12 synthesized compounds active against Gram-positive pathogens in concentrations ranging from 2 to 32 µg/mL. The antibacterial activity of the derivatives is explained by the steric, electronic, and hydrogen-bond acceptor properties of the compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA