Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Appl Oral Sci ; 30: e20220028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35674542

RESUMO

OBJECTIVES: Cleidocranial dysplasia (CCD) is a skeletal disorder affecting cranial sutures, teeth, and clavicles, and is associated with the RUNX2 mutations. Although numerous patients have been described, a direct genotype-phenotype correlation for RUNX2 has been difficult to establish. Further cases must be studied to understand the clinical and genetic spectra of CCD. To characterize detailed phenotypes and identify variants causing CCD in five unrelated patients and their family members. METHODOLOGY: Clinical and radiographic examinations were performed. Genetic variants were identified by exome and Sanger sequencing, data were analyzed by bioinformatics tools. RESULTS: Three cases were sporadic and two were familial. Exome sequencing successfully detected the heterozygous pathogenic RUNX2 variants in all affected individuals. Three were novel, comprising a frameshift c.739delA (p.(Ser247Valfs*)) in exon 6 (Patient-1), a nonsense c.901C>T (p.(Gln301*)) in exon 7 (Patient-2 and affected mother), and a nonsense c.1081C>T (p.(Gln361*)) in exon 8 (Patient-3). Two previously reported variants were missense: the c.673C>T (p.(Arg225Trp)) (Patient-4) and c.674G>A (p.(Arg225Gln)) (Patient-5) in exon 5 within the Runt homology domain. Patient-1, Patient-2, and Patient-4 with permanent dentition had thirty, nineteen, and twenty unerupted teeth, respectively; whereas Patient-3 and Patient-5, with deciduous dentition, had normally developed teeth. All patients exhibited typical CCD features, but the following uncommon/unreported phenotypes were observed: left fourth ray brachymetatarsia (Patient-1), normal clavicles (Patient-2 and affected mother), phalangeal malformations (Patient-3), and normal primary dentition (Patient-3, Patient-5). CONCLUSIONS: The study shows that exome sequencing is effective to detect mutation across ethnics. The two p.Arg225 variants confirm that the Runt homology domain is vital for RUNX2 function. Here, we report a new CCD feature, unilateral brachymetatarsia, and three novel truncating variants, expanding the phenotypic and genotypic spectra of RUNX2 , as well as show that the CCD patients can have normal deciduous teeth, but must be monitored for permanent teeth anomalies.


Assuntos
Displasia Cleidocraniana , Subunidade alfa 1 de Fator de Ligação ao Core , Displasia Cleidocraniana/complicações , Displasia Cleidocraniana/diagnóstico por imagem , Displasia Cleidocraniana/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Humanos , Mutação , Mutação de Sentido Incorreto , Fenótipo
2.
J. appl. oral sci ; J. appl. oral sci;30: e20220028, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1386010

RESUMO

Abstract Cleidocranial dysplasia (CCD) is a skeletal disorder affecting cranial sutures, teeth, and clavicles, and is associated with the RUNX2 mutations. Although numerous patients have been described, a direct genotype-phenotype correlation for RUNX2 has been difficult to establish. Further cases must be studied to understand the clinical and genetic spectra of CCD. Objectives To characterize detailed phenotypes and identify variants causing CCD in five unrelated patients and their family members. Methodology Clinical and radiographic examinations were performed. Genetic variants were identified by exome and Sanger sequencing, data were analyzed by bioinformatics tools. Results Three cases were sporadic and two were familial. Exome sequencing successfully detected the heterozygous pathogenic RUNX2 variants in all affected individuals. Three were novel, comprising a frameshift c.739delA (p.(Ser247Valfs*)) in exon 6 (Patient-1), a nonsense c.901C>T (p.(Gln301*)) in exon 7 (Patient-2 and affected mother), and a nonsense c.1081C>T (p.(Gln361*)) in exon 8 (Patient-3). Two previously reported variants were missense: the c.673C>T (p.(Arg225Trp)) (Patient-4) and c.674G>A (p.(Arg225Gln)) (Patient-5) in exon 5 within the Runt homology domain. Patient-1, Patient-2, and Patient-4 with permanent dentition had thirty, nineteen, and twenty unerupted teeth, respectively; whereas Patient-3 and Patient-5, with deciduous dentition, had normally developed teeth. All patients exhibited typical CCD features, but the following uncommon/unreported phenotypes were observed: left fourth ray brachymetatarsia (Patient-1), normal clavicles (Patient-2 and affected mother), phalangeal malformations (Patient-3), and normal primary dentition (Patient-3, Patient-5). Conclusions The study shows that exome sequencing is effective to detect mutation across ethnics. The two p.Arg225 variants confirm that the Runt homology domain is vital for RUNX2 function. Here, we report a new CCD feature, unilateral brachymetatarsia, and three novel truncating variants, expanding the phenotypic and genotypic spectra of RUNX2 , as well as show that the CCD patients can have normal deciduous teeth, but must be monitored for permanent teeth anomalies.

3.
Genet. mol. biol ; Genet. mol. biol;40(4): 763-767, Oct.-Dec. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-892453

RESUMO

Abstract Osteogenesis imperfecta (OI) is genetically heterogeneous. Mutations in COL1A1 and COL1A2 are responsible for at least 90% of the cases, which are transmitted in an autosomal dominant manner or are de novo events. We identified a Thai boy with OI whose parents were first cousins. Because the proband was the product of a consanguineous marriage, we hypothesized that he might be homozygous for a mutation in a known gene causing a recessive form of OI. Using whole exome sequencing (WES), we did not find any pathogenic mutations in any known gene responsible for an autosomal recessive form of OI. Instead, we identified a COL1A1 frameshift mutation, c.1290delG (p.Gly431Valfs*110) in heterozygosis. By Sanger sequencing, the mutation was confirmed in the proband, and not detected in his parents, indicating that it was a de novo mutation. These findings had implication for genetic counseling. In conclusion, we expanded the mutational spectrum of COL1A1 and provided another example of a de novo pathogenic mutation in heterozygosis in a patient born to consanguineous parents.

4.
Genet Mol Biol ; 40(4): 763-767, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28956891

RESUMO

Osteogenesis imperfecta (OI) is genetically heterogeneous. Mutations in COL1A1 and COL1A2 are responsible for at least 90% of the cases, which are transmitted in an autosomal dominant manner or are de novo events. We identified a Thai boy with OI whose parents were first cousins. Because the proband was the product of a consanguineous marriage, we hypothesized that he might be homozygous for a mutation in a known gene causing a recessive form of OI. Using whole exome sequencing (WES), we did not find any pathogenic mutations in any known gene responsible for an autosomal recessive form of OI. Instead, we identified a COL1A1 frameshift mutation, c.1290delG (p.Gly431Valfs*110) in heterozygosis. By Sanger sequencing, the mutation was confirmed in the proband, and not detected in his parents, indicating that it was a de novo mutation. These findings had implication for genetic counseling. In conclusion, we expanded the mutational spectrum of COL1A1 and provided another example of a de novo pathogenic mutation in heterozygosis in a patient born to consanguineous parents.

5.
Genet. mol. biol ; Genet. mol. biol;29(4): 617-620, 2006. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-450481

RESUMO

Campomelic dysplasia (CD) is an autosomal dominant skeletal malformation syndrome with features including bowed lower limbs with pretibial skin dimpling, hypoplastic scapulae and pelvic bones, and 11 pairs of ribs. Mutations in the SOX9 gene have been identified to cause CD. The gene encodes a transcription factor containing a dimerization, a high mobility group, and a C-terminal transactivation (TA) domain. Up to now, 35 SOX9 mutations have been published. In the present study, we describe a Thai girl with clinically and radiologically typical CD. Direct sequencing analysis of the PCR products for the entire coding region of SOX9 revealed that she was heterozygous for a novel 448G > T in exon 2 of SOX9. The DNA change was expected to result in E150X and loss of the entire TA domain. This result further supports that SOX9 is the only gene, discovered to date, responsible for CD across different populations and that the TA domain is important to the function of the normal SOX9.


Assuntos
Humanos , Masculino , Feminino , Gravidez , Recém-Nascido , Lactente , Adulto , Doenças do Desenvolvimento Ósseo/congênito , Mutação , Fatores de Transcrição , Aberrações Cromossômicas , Reação em Cadeia da Polimerase , Síndrome , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA