RESUMO
Epaltes mexicana is a plant widely used in traditional medicine and as a food in Mexico; however, its phytochemical and pharmacological studies are limited. This study aimed to identify the active secondary metabolites of Epaltes mexicana and determine its cytotoxic activity on cancer cell lines. Three organic extracts were obtained by maceration using n-hexane, dichloromethane, and methanol. The n-hexane extract was fractioned by simple column chromatography. Eight terpenes were annotated in collection 6 (C6) by LC-QTOF-MS using a gradient elution and Electrospray Ionization (ESI) in positive ion mode: 1) Gibberellin A15, 2) farfugin A, 3) dehydromyodesmone, 4) eremopetasitenin A1, 5) hydroxyisonobilin, 6) anhydrocinnzeylanine, 7) nigakilactone H and 8) taxodione. On the other hand, C6 showed a concentration-dependent cytotoxic effect on cancer cell lines MCF-7 (Emax = 74.69 ± 6.19 % and IC50 = 6.31 µg/mL), MDA-MB-231 (Emax = 79.28 ± 12.12 % and IC50 = 124.21 µg/mL), and SiHa (Emax = 82.96 ± 6.02 % and IC50 = 124.31 µg/mL). The C6 did not show a cytotoxic effect against DU-145 and non-cancerous cells from the mammary glands MCF-10A. These results indicate cytotoxic specificity on cancer cell lines and support the hypothesis that terpenes identified in E. mexicana must be investigated and developed for non-clinical and clinical trials as potential anti-cancer drugs.
RESUMO
Because of the increasing global spread of type 2 diabetes mellitus, there is a need to develop new antidiabetic agents. Recently we have synthesized new decavanadates using metformin as counterion. In particular, the compound containing three metforminium dications has been obtained in high yield and has been completely characterized. Biological studies using Wistar rats that have been fed with a high caloric diet inducing insulin resistance and metabolic syndrome were carried out. Results of the impact on key biochemical parameters mediated by metformin alone and the new compound are here presented. The metforminium decavanadate (H2Metf)3[V10O28]·8H2O, abbreviated as Metf-V10O28, was shown to have pharmacological potential as a hypoglycemic, lipid-lowering and metabolic regulator, since the resulting compound made of the two components with antidiabetic activities, reduces both dosage and time of administration (twice a week). Hence, due to the beneficial effects induced by the metforminium decavanadate we recommend to continue the exploration into the mechanism and toxicology of this new compound.