Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Planta ; 257(4): 83, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928335

RESUMO

MAIN CONCLUSION: PvSYMRK-EGFP undergoes constitutive and rhizobia-induced endocytosis, which rely on the phosphorylation status of T589, the endocytic YXXØ motif and the kinase activity of the receptor. Legume-rhizobia nodulation is a complex developmental process. It initiates when the rhizobia-produced Nod factors are perceived by specific LysM receptors present in the root hair apical membrane. Consequently, SYMRK (Symbiosis Receptor-like Kinase) becomes active in the root hair and triggers an extensive signaling network essential for the infection process and nodule organogenesis. Despite its relevant functions, the underlying cellular mechanisms involved in SYMRK signaling activity remain poorly characterized. In this study, we demonstrated that PvSYMRK-EGFP undergoes constitutive and rhizobia-induced endocytosis. We found that in uninoculated roots, PvSYMRK-EGFP is mainly associated with the plasma membrane, although intracellular puncta labelled with PvSymRK-EGFP were also observed in root hair and nonhair-epidermal cells. Inoculation with Rhizobium etli producing Nod factors induces in the root hair a redistribution of PvSYMRK-EGFP from the plasma membrane to intracellular puncta. In accordance, deletion of the endocytic motif YXXØ (YKTL) and treatment with the endocytosis inhibitors ikarugamycin (IKA) and tyrphostin A23 (TyrA23), as well as brefeldin A (BFA), drastically reduced the density of intracellular PvSYMRK-EGFP puncta. A similar effect was observed in the phosphorylation-deficient (T589A) and kinase-dead (K618E) mutants of PvSYMRK-EGFP, implying these structural features are positive regulators of PvSYMRK-EGFP endocytosis. Our findings lead us to postulate that rhizobia-induced endocytosis of SYMRK modulates the duration and amplitude of the SYMRK-dependent signaling pathway.


Assuntos
Phaseolus , Rhizobium , Nódulos Radiculares de Plantas/metabolismo , Phaseolus/metabolismo , Nodulação , Rhizobium/fisiologia , Simbiose , Proteínas de Transporte/metabolismo , Endocitose , Raízes de Plantas/metabolismo , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 23(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35563659

RESUMO

The development of a symbiotic nitrogen-fixing nodule in legumes involves infection and organogenesis. Infection begins when rhizobia enter a root hair through an inward structure, the infection thread (IT), which guides the bacteria towards the cortical tissue. Concurrently, organogenesis takes place by inducing cortical cell division (CCD) at the infection site. Genetic analysis showed that both events are well-coordinated; however, the dynamics connecting them remain to be elucidated. To visualize the crossroads between IT and CCD, we benefited from the fact that, in Phaseolus vulgaris nodulation, where the first division occurs in subepidermal cortical cells located underneath the infection site, we traced a Rhizobium etli strain expressing DsRed, the plant cytokinesis marker YFP-PvKNOLLE, a nuclear stain and cell wall auto-fluorescence. We found that the IT exits the root hair to penetrate an underlying subepidermal cortical (S-E) cell when it is concluding cytokinesis.


Assuntos
Phaseolus , Rhizobium , Divisão Celular , Phaseolus/microbiologia , Proteínas de Plantas/genética , Nodulação , Raízes de Plantas/genética , Rhizobium/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética
3.
Front Microbiol ; 11: 1752, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849381

RESUMO

Conjugative transfer is one of the mechanisms allowing diversification and evolution of bacteria. Rhizobium etli CFN42 is a bacterial strain whose habitat is the rhizosphere and is able to form nodules as a result of the nitrogen-fixing symbiotic relationship it may establish with the roots of Phaseolus vulgaris. R. etli CFN42 contains one chromosome and six large plasmids (pRet42a - pRet42f). Most of the genetic information involved in the establishment of the symbiosis is localized on plasmid pRet42d, named as the symbiotic plasmid (pSym). This plasmid is able to perform conjugation, using pSym encoded transfer genes controlled by the RctA/RctB system. Another plasmid of CFN42, pRet42a, has been shown to perform conjugative transfer not only in vitro, but also on the surface of roots and inside nodules, using other rhizobia as recipients. In addition to the rhizobia involved in the formation of nodules, these structures have been shown to contain endophytic bacteria from different genera and species. In this work, we have explored the conjugative transfer of the pSym (pRet42d) from R. etli CFN42 to endophytic bacteria as putative recipients, using as donor a CFN42 derivative labeled with GFP in the pRet42d and RFP in the chromosome. We were able to isolate some transconjugants, which inherit the GFP, but not the RFP marker. Some of them were identified, analyzed and evaluated for their ability to nodulate. We found transconjugants from genera such as Stenotrophomonas, Achromobacter, and Bacillus, among others. Although all the transconjugants carried the GFP marker, and nod, fix, and nif genes from pRet42d, not all were able to nodulate. Ultrastructure microscopy analysis showed some differences in the structure of the nodules of one of the transconjugants. A replicon of the size of pRet42d (371 Kb) could not be visualized in the transconjugants, suggesting that the pSym or a segment of the plasmid is integrated in the chromosome of the recipients. These findings strengthen the proposal that nodules constitute a propitious environment for exchange of genetic information among bacteria, in addition to their function as structures where nitrogen fixation and assimilation takes place.

4.
Front Plant Sci ; 8: 2003, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218056

RESUMO

Reactive oxygen species (ROS) produced by respiratory burst oxidase homologs (RBOHs) regulate numerous plant cell processes, including the symbiosis between legumes and nitrogen-fixing bacteria. Rapid and transient ROS production was reported after Phaseolus vulgaris root hairs were treated with Nod factors, indicating the presence of a ROS-associated molecular signature in the symbiosis signaling pathway. Rboh is a multigene family containing nine members (RbohA-I) in P. vulgaris. RNA interference of RbohB suppresses ROS production and attenuates rhizobial infection thread (IT) progression in P. vulgaris root hairs. However, the roles of other Rboh members in symbiotic interactions are largely unknown. In this study, we characterized the role of the NADPH oxidase-encoding gene RbohA (Phvulv091020621) in the P. vulgaris-Rhizobium tropici symbiosis. The spatiotemporal activity of the RbohA promoter colocalized with growing ITs and was associated with vascular bundles in developing nodules. Subcellular localization studies indicated that RBOHA was localized in the plasma membrane of P. vulgaris root hairs. After rhizobial inoculation, PvRBOHA was mainly distributed in the infection pocket and, to a lesser extent, throughout the IT. In PvRbohA RNAi lines, the rhizobial infection events were significantly reduced and, in successful infections, IT progression was arrested within the root hair, but did not impede cortical cell division. PvRbohA-RNAi nodules failed to fix nitrogen, since the infected cells in the few nodules formed were empty. RbohA-dependent ROS production and upregulation of several antioxidant enzymes was attenuated in rhizobia-inoculated PvRbohA-RNAi roots. These combined results indicate that PvRbohA is crucial for effective Rhizobium infection and its release into the nodule cells. This oxidase is partially or indirectly required to promote nodule organogenesis, altering the expression of auxin- and cyclin-related genes and genes involved in cell growth and division.

5.
Plant Cell Physiol ; 55(3): 580-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24399235

RESUMO

Legume plants secrete signaling molecules called flavonoids into the rhizosphere. These molecules activate the transcription of rhizobial nod genes, which encode proteins involved in the synthesis of signaling compounds named Nod factors (NFs). NFs, in turn, trigger changes in plant gene expression, cortical cell dedifferentiation and mitosis, depolarization of the root hair cell membrane potential and rearrangement of the actin cytoskeleton. Actin polymerization plays an important role in apical growth in hyphae and pollen tubes. Using sublethal concentrations of fluorescently labeled cytochalasin D (Cyt-Fl), we visualized the distribution of filamentous actin (F-actin) plus ends in living Phaseolus vulgaris and Arabidopsis root hairs during apical growth. We demonstrated that Cyt-Fl specifically labeled the newly available plus ends of actin microfilaments, which probably represent sites of polymerization. The addition of unlabeled competing cytochalasin reduced the signal, suggesting that the labeled and unlabeled forms of the drug bind to the same site on F-actin. Exposure to Rhizobium etli NFs resulted in a rapid increase in the number of F-actin plus ends in P. vulgaris root hairs and in the re-localization of F-actin plus ends to infection thread initiation sites. These data suggest that NFs promote the formation of F-actin plus ends, which results in actin cytoskeleton rearrangements that facilitate infection thread formation.


Assuntos
Actinas/metabolismo , Lipopolissacarídeos/farmacologia , Phaseolus/efeitos dos fármacos , Phaseolus/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo
6.
Toxicon ; 60(7): 1223-7, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22982117

RESUMO

Hyaluronidases (Hyal) present in the venom of poisonous animals have been considered as "spreading factors" that facilitate a fast penetration of the venom in the prey. We have found that hyaluronidase from the tarantula Brachypelma vagans venom (BvHyal) displays a substrate-specific Hyal activity against hyaluronan. By using a combined strategy based on peptide sequencing and RT-PCR, we have cloned a BvHyal cDNA. Active recombinant BvHyal was efficiently expressed in a baculovirus system in insect cell.


Assuntos
Hialuronoglucosaminidase/genética , Venenos de Aranha/enzimologia , Animais , Baculoviridae/genética , Clonagem Molecular , Hialuronoglucosaminidase/química , Insetos , Proteínas Recombinantes/biossíntese
7.
Plant Signal Behav ; 7(6): 691-3, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22580688

RESUMO

Symbiotic legume-rhizobia relationship leads to the formation of nitrogen-fixing nodules. Successful nodulation depends on the expression and cross-talk of a batttery of genes, among them SymRK (symbiosis receptor-like kinase), a leucine-rich repeat receptor-like kinase. SymRK is required for the rhizobia invasion of root hairs, as well as for the infection thread and symbiosome formation. Using immunolocalization and downregulation strategies we have recently provided evidence of a new function of PvSymRK in nodulation. We have found that a tight regulation of PvSymRK expression is required for the accurate development of the vascular bundle system in Phaseolus vulgaris nodules.


Assuntos
Phaseolus/enzimologia , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/enzimologia , Proteínas Quinases/metabolismo , Nódulos Radiculares de Plantas/enzimologia , Simbiose , Proteínas de Plantas/química , Proteínas Quinases/química
8.
Plant Cell Environ ; 34(12): 2109-21, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21848862

RESUMO

The symbiotic interaction of legumes and rhizobia results in the formation of nitrogen-fixing nodules. Nodulation depends on the finely coordinated expression of a battery of genes involved in the infection and the organogenesis processes. After Nod factor perception, symbiosis receptor kinase (SymRK) receptor triggers a signal transduction cascade essential for nodulation leading to cortical cell divisions, infection thread (IT) formation and final release of rhizobia to the intracellular space, forming the symbiosome. Herein, the participation of SymRK receptor during the nodule organogenesis in Phaseolus vulgaris is addressed. Our findings indicate that besides its expression in the nodule epidermis, in IT, and in uninfected cells of the infection zone, PvSymRK immunolocalizes in the root and nodule vascular system. On the other hand, knockdown expression of PvSymRK led to the formation of scarce and defective nodules, which presented alterations in both IT/symbiosome formation and vascular system.


Assuntos
Phaseolus/genética , Proteínas de Plantas/metabolismo , Nodulação , Proteínas Serina-Treonina Quinases/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Phaseolus/enzimologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Proteínas Serina-Treonina Quinases/genética , Nódulos Radiculares de Plantas/enzimologia , Transdução de Sinais , Simbiose
9.
J Mol Biol ; 396(2): 280-92, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19941869

RESUMO

Systemic amyloid light-chain (LC) amyloidosis is a disease process characterized by the pathological deposition of monoclonal LCs in tissue. All LC subtypes are capable of fibril formation although lambda chains, particularly those belonging to the lambda6 type, are overrepresented. Here, we report the thermodynamic and in vitro fibrillogenic properties of several mutants of the lambda6 protein 6aJL2 in which Pro7 and/or His8 was substituted by Ser or Pro. The H8P and H8S mutants were almost as stable as the wild-type protein and were poorly fibrillogenic. In contrast, the P7S mutation decreased the thermodynamic stability of 6aJL2 and greatly enhanced its capacity to form amyloid-like fibrils in vitro. The crystal structure of the P7S mutant showed that the substitution induced both local and long-distance effects, such as the rearrangement of the V(L) (variable region of the light chain)-V(L) interface. This mutant crystallized in two orthorhombic polymorphs, P2(1)2(1)2(1) and C222(1). In the latter, a monomer that was not arranged in the typical Bence-Jones dimer was observed for the first time. Crystal-packing analysis of the C222(1) lattice showed the establishment of intermolecular beta-beta interactions that involved the N-terminus and beta-strand B and that these could be relevant in the mechanism of LC fibril formation. Our results strongly suggest that Pro7 is a key residue in the conformation of the N-terminal sheet switch motif and, through long-distance interactions, is also critically involved in the contacts that stabilized the V(L) interface in lambda6 LCs.


Assuntos
Amiloide/química , Amiloide/genética , Cadeias lambda de Imunoglobulina/química , Cadeias lambda de Imunoglobulina/genética , Mutação Puntual , Multimerização Proteica/genética , Amiloide/metabolismo , Amiloidose/genética , Cristalografia por Raios X , Humanos , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Cadeias lambda de Imunoglobulina/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação Puntual/fisiologia , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Temperatura , Termodinâmica
10.
Biochim Biophys Acta ; 1788(10): 2229-37, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19559004

RESUMO

Bacillus thuringiensis Cry toxins are used in the control of insect pests. They are pore-forming toxins with a complex mechanism that involves the sequential interaction with receptors. They are produced as protoxins, which are activated by midgut proteases. Activated toxin binds to cadherin receptor, inducing an extra cleavage including helix alpha-1, facilitating the formation of a pre-pore oligomer. The toxin oligomer binds to secondary receptors such as aminopeptidase and inserts into lipid rafts forming pores and causing larval death. The primary threat to efficacy of Bt-toxins is the evolution of insect resistance. Engineered Cry1AMod toxins, devoid of helix alpha-1, could be used for the control of resistance in lepidopterans by bypassing the altered cadherin receptor, killing resistant insects affected in this receptor. Here we analyzed the mechanism of action of Cry1AbMod. We found that alkaline pH and the presence of membrane lipids facilitates the oligomerization of Cry1AbMod. In addition, tryptophan fluorescence emission spectra, ELISA binding to pure aminopeptidase receptor, calcein release assay and analysis of ionic-conductance in planar lipid bilayers, indicated that the secondary steps in mode of action that take place after interaction with cadherin receptor such as oligomerization, receptor binding and pore formation are similar in the Cry1AbMod and in the wild type Cry1Ab. Finally, the membrane-associated structure of Cry1AbMod oligomer was analyzed by electron crystallography showing that it forms a complex with a trimeric organization.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Endotoxinas/genética , Endotoxinas/metabolismo , Engenharia Genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Insetos/efeitos dos fármacos , Larva/efeitos dos fármacos , Aedes/efeitos dos fármacos , Animais , Anopheles/efeitos dos fármacos , Toxinas de Bacillus thuringiensis , Bioensaio , Western Blotting , Antígenos CD13/metabolismo , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Insetos/metabolismo , Inseticidas/farmacologia , Larva/metabolismo , Larva/microbiologia , Bicamadas Lipídicas , Manduca/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Mutação/genética , Controle Biológico de Vetores , Multimerização Proteica , Triptofano
11.
Exp Parasitol ; 110(4): 363-73, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15913610

RESUMO

One of the most fascinating aspects of the Entamoeba histolytica trophozoite ultrastructure is the lack of a typical secretory pathway, particularly of rough endoplasmic reticulum and Golgi system, in a cell with such a high secretory activity. Here, we describe the isolation of amoeba cell structures containing ER-typical activities. Following isopycnic centrifugation of plasma membrane-free extracts, microsomes enriched in enzymatic activities such as dolichol-P-mannose synthase (DPMS; EC 2.4.1.83), UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase (NAGPT; EC 2.7.8.15), and UDP-D-GlcNAc:dolichol-PP GlcNAc (NAGT; EC 2.4.1.141) were resolved from phagolysosomal fractions. Sec61alpha-subunit, an ER-marker involved in the translocation of nascent proteins to the ER, was found to co-fractionate with DPMS activity indicating that they are contained in microsomes with a similar density. Further, we optimized conditions for trophozoite homogenization and differential centrifugation that resulted in the separation of a 57,000 g-sedimenting microsomal fraction containing EhSec61alpha-subunit, EhDPMS, and EhPDI (protein disulfide isomerase, a soluble marker of the lumen of the ER). A relevant observation was the lack of ER markers associated to the nuclear fraction. Large macromolecular structures such as Ehproteasome were sedimented at a higher speed. Our knowledge of the molecular machinery involved in the biosynthesis of dolichol-linked oligosaccharide was enriched with the identification of putative genes related to the stepwise assembly of the dolichol-PP-GlcNAc(2)Man(5) core. No evidence of genes supporting further assembly steps was obtained at this time.


Assuntos
Entamoeba histolytica/ultraestrutura , Microssomos/enzimologia , Proteínas de Protozoários/metabolismo , Acetilglucosaminidase/análise , Fosfatase Ácida/análise , Animais , Western Blotting , Centrifugação com Gradiente de Concentração , Dolicóis/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/fisiologia , Entamoeba histolytica/enzimologia , Entamoeba histolytica/genética , Entamoeba histolytica/fisiologia , Glucosiltransferases/análise , Glicosilação , Manosiltransferases/análise , Manosiltransferases/genética , Proteínas de Membrana/análise , Microssomos/fisiologia , Microssomos/ultraestrutura , Oligossacarídeos/biossíntese , Complexo de Endopeptidases do Proteassoma/análise , Isomerases de Dissulfetos de Proteínas/análise , Canais de Translocação SEC
12.
Exp Parasitol ; 109(4): 241-51, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15755422

RESUMO

The Sec61alpha protein is defined as a highly conserved essential integral component of the endoplasmic reticulum in eukaryotic cells. We report a detailed immunolocalization of the Entamoeba histolytica homologue of the Sec61alpha subunit (EhSec61alpha), which shows an irregular pattern throughout the cell and is also found on the cell surface, its effective down-regulation by means of antisense peptide nucleic acids and its effects on cell proliferation, subcellular distribution of two virulence factors, and the ability of the trophozoites to cause liver abscess in hamsters. Although Sec61alpha levels are specifically decreased in antisense PNA-treated trophozoites, which proliferate more slowly than the controls, mobilization of the cysteine protease 5 and amoebapore to the cell surface is not significantly impeded and the capacity to induce liver abscess in hamsters is largely unaffected. The implications of these findings are discussed in the context of the peculiar cell biology of E. histolytica.


Assuntos
Entamoeba histolytica/metabolismo , Abscesso Hepático Amebiano/parasitologia , Proteínas de Membrana/metabolismo , Ácidos Nucleicos Peptídicos/farmacologia , Proteínas de Protozoários/metabolismo , Animais , Cricetinae , Cisteína Endopeptidases/metabolismo , Regulação para Baixo , Entamoeba histolytica/efeitos dos fármacos , Entamoeba histolytica/patogenicidade , Citometria de Fluxo , Canais Iônicos/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/imunologia , Microscopia de Fluorescência , Proteínas de Protozoários/análise , Proteínas de Protozoários/imunologia , Coelhos , Canais de Translocação SEC , Virulência , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA