Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 475(8): 1441-1454, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29555846

RESUMO

CoREST family of transcriptional co-repressors regulates gene expression and cell fate determination during development. CoREST co-repressors recruit with different affinity the histone demethylase LSD1 (KDM1A) and the deacetylases HDAC1/2 to repress with variable strength the expression of target genes. CoREST protein levels are differentially regulated during cell fate determination and in mature tissues. However, regulatory mechanisms of CoREST co-repressors at the protein level have not been studied. Here, we report that CoREST (CoREST1, RCOR1) and its homologs CoREST2 (RCOR2) and CoREST3 (RCOR3) interact with PIASγ (protein inhibitor of activated STAT), a SUMO (small ubiquitin-like modifier)-E3-ligase. PIASγ increases the stability of CoREST proteins and facilitates their SUMOylation by SUMO-2. Interestingly, the SUMO-conjugating enzyme, Ubc9 also facilitates the SUMOylation of CoREST proteins. However, it does not change their protein levels. Specificity was shown using the null enzymatic form of PIASγ (PIASγ-C342A) and the SUMO protease SENP-1, which reversed SUMOylation and the increment of CoREST protein levels induced by PIASγ. The major SUMO acceptor lysines are different and are localized in nonconserved sequences among CoREST proteins. SUMOylation-deficient CoREST1 and CoREST3 mutants maintain a similar interaction profile with LSD1 and HDAC1/2, and consequently maintain similar repressor capacity compared with wild-type counterparts. In conclusion, CoREST co-repressors form protein complexes with PIASγ, which acts both as SUMO E3-ligase and as a protein stabilizer for CoREST proteins. This novel regulation of CoREST by PIASγ interaction and SUMOylation may serve to control cell fate determination during development.


Assuntos
Proteínas Correpressoras/química , Proteínas Correpressoras/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Transcrição Gênica , Animais , Proteínas Correpressoras/genética , Feminino , Células HEK293 , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas Inibidoras de STAT Ativados/genética , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
2.
PLoS One ; 10(6): e0131760, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26111147

RESUMO

CoREST (CoREST1, rcor1) transcriptional corepressor together with the histone demethylase LSD1 (KDM1A) and the histone deacetylases HDAC1/2 form LSD1-CoREST-HDAC (LCH) transcriptional complexes to regulate gene expression. CoREST1 belong to a family that also comprises CoREST2 (rcor2) and CoREST3 (rcor3). CoREST1 represses the expression of neuronal genes during neuronal differentiation. However, the role of paralogs CoREST2 and CoREST3 in this process is just starting to emerge. Here, we report the expression of all CoRESTs and partners LSD1 and HDAC1/2 in two models of neuronal differentiation: Nerve-Growth-Factor (NGF)-induced neuronal phenotype of PC12 cells, and in vitro maturation of embryonic rat cortical neurons. In both models, a concomitant and gradual decrease of LSD1, HDAC1, HDAC2, CoREST1, and CoREST2, but not CoREST3 was observed. As required by the study, full-length rat rcor1 gene was identified using in silico analysis of available rat genome. The work was also complemented by the analysis of rat RNA-seq databases. The analysis showed that all CoRESTs, including the identified four splicing variants of rat CoREST3, display a wide expression in adult tissues. Moreover, the analysis of RNA-seq databases showed that CoREST2 displays a higher expression than CoREST1 and CoREST3 in the mature brain. Immunofluorescent assays and immunoblots of adult rat brain showed that all CoRESTs are present in both glia and neurons. Regarding functional partnership, CoREST2 and CoREST3 interact with all LSD1 splicing variants. In conclusion, neuronal differentiation is accompanied by decreased expression of all core components of LCH complexes, but not CoREST3. The combination of the differential transcriptional repressor capacity of LCH complexes and variable protein levels of its different components should result in a finely tuned gene expression during neuronal differentiation and in the adult brain.


Assuntos
Proteínas Correpressoras/genética , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Histona Desmetilases/genética , Neurogênese/genética , Neurônios/citologia , Animais , Regulação para Baixo/genética , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Neurônios/metabolismo , Células PC12 , Isoformas de Proteínas/genética , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA