RESUMO
In this study we investigated the ability of zebrafish to discriminate visual signs and associate them with a reward in an associative-learning protocol including distractors. Moreover, we studied the effects of caffeine on animal performance in the task. After being trained to associate a specific image pattern with a reward (food) in the presence of other, distractor images, the fish were challenged to locate the exact cue associated with the reward. The distractors were same-colored pattern images similar to the target. Both the target and distractors were continually moved around the tank. Fish were exposed to three caffeine concentrations for 14 days: 0 mg/L (control, n = 12), 10 mg/L (n = 14), and 50 mg/L (n = 14). Zebrafish spent most of the time close to the target (where the reward was offered) under the effects of 0 and 10 mg/L caffeine, and the shortest latency to reach the target was observed for the 10-mg/L caffeine group. Both caffeine treatments (10 and 50 mg/L) increased the average speed and distance traveled when compared to the control group. This study confirms previous results showing that zebrafish demonstrate conditioned learning ability; however, low-dose caffeine exposure seems to favor visual cue discrimination and to increase zebrafish performance in a multicue discrimination task, in which primarily focus and attention are required in order to obtain the reward.
Assuntos
Aprendizagem por Associação/efeitos dos fármacos , Atenção/efeitos dos fármacos , Cafeína/administração & dosagem , Antagonistas de Receptores Purinérgicos P1/administração & dosagem , Peixe-Zebra , Animais , Comportamento Animal/efeitos dos fármacos , Cafeína/farmacologia , Café , Condicionamento Psicológico/efeitos dos fármacos , Discriminação Psicológica/efeitos dos fármacos , Antagonistas de Receptores Purinérgicos P1/farmacologia , Recompensa , Percepção Visual/efeitos dos fármacosRESUMO
Many studies regarding the effects of drugs investigate the acute and chronic use of alcohol, but only a few address the effects of caffeine and alcohol combined to the performance of the zebrafish in cognitive tasks. The zebrafish is an important model for studying the effects of drugs on learning, because it has large genetic similarities to humans and the non-invasive administration of the substances favors translational bias of research. In this study, we observed the effects of alcohol and caffeine on zebrafish cognition through an object discrimination test. We noticed that animals subjected to acute alcohol dose and those under alcohol or caffeine withdrawal did not show discrimination. When fish were treated with associated alcohol and caffeine, those chronically treated with alcohol and subjected to moderate acute dose of caffeine showed learning of the task. Our results reinforce the harmful effects of the alcohol use on cognitive tasks, and suggest that continued use of high doses of caffeine cause cognitive impairment during withdrawal of the substance. However, the acute use of caffeine appears to reverse the harmful effects of alcohol withdrawal, allowing discriminative performance equivalent to control fish. Finally, we reiterate the use of zebrafish as a model for drug effects screening and search for active compounds that modulate the alcohol and caffeine effects.