Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Folia Primatol (Basel) ; 88(5): 421-454, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29262408

RESUMO

We analyzed 156 specimens of diverse howler monkey taxa (Alouatta; Atelidae, Primates) for different mitochondrial genes (5,567 base pairs), with special emphasis on A. palliata and related taxa. Our results showed no relevant differences among individuals of different putative taxa, A. p. palliata, A. p. aequatorialis, A. coibensis coibensis, and A. c. trabeata. We found no spatial differences in genetic structure of A. p. palliata throughout Costa Rica, Nicaragua, and Honduras. A. p. mexicana (genetic distance: 1.6-2.1%) was the most differentiated taxon within A. palliata. Therefore, we postulate the existence of only 2 clearly defined subspecies within A. palliata (A. p. palliata and A. p. mexicana). A. palliata and A. pigra (traditionally considered a subspecies of A. palliata) are 2 clearly differentiated species as was demonstrated by Cortés-Ortiz and colleagues in 2003, with a temporal split between the 2 species around 3.6-3.7 million years ago (MYA). Our results with the Median Joining Network procedure showed that the ancestors of the cis-Andean Alouatta gave rise to the ancestors of the trans-Andean Alouatta around 6.0-6.9 MYA. As Cortés-Ortiz et al. showed, A. sara and A. macconnelli are differentiable species from A. seniculus, although the first 2 taxa were traditionally considered subspecies of A. seniculus. Our findings agree with the possibility that the ancestor of A. sara gave rise to the ancestor of A. pigra in northern South America. In turn, the ancestor of A. pigra originated the ancestor of A. palliata. Two of our results strongly support the hypothesis that the South American A. palliata (the putative A. p. aequatorialis) was the original population of this species; it has high genetic diversity and no evidence of population expansion. The Central America A. palliata is the derived population. It has low genetic diversity and there is clear evidence of population expansion. However, A. palliata and A. pigra probably migrated into Central America by 2 different routes: the Isthmus of Panama (A. palliata) and Caribbean island arch (A. pigra). Finally, the red howler monkeys from the island of Trinidad in the Caribbean Sea were not A. macconnelli (= A. s. stramineus) as Groves maintained in his influential 2001 publication on primate taxonomy. This taxon is more related to A. s. seniculus, although it formed a monophyletic clade. Future molecular and karyotypic studies will show if the Trinidad red howler monkeys should be considered as an extension of the Venezuelan taxon, A. arctoidea, as a subspecies of A. seniculus(A. s. seniculus), or, in the case of extensive chromosomal rearrangements, even a new species.


Assuntos
Alouatta/genética , Genes Mitocondriais/genética , Filogenia , Alouatta/classificação , Distribuição Animal , Animais , América Central , Feminino , Variação Genética , Filogeografia , América do Sul
2.
Genetica ; 144(1): 59-69, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26790662

RESUMO

Genealogical records of animals (studbook) are created to avoid reproduction between closely related individuals, which could cause inbreeding, particularly for such endangered species as the Panthera onca (Linnaeus, 1758). Jaguar is the largest felid in the Americas and is considered an important ecological key species. In Mexico, wild jaguar populations have been significantly reduced in recent decades, and population decline typically accompany decreases in genetic variation. There is no current census of captive jaguars in Mexico, and zoos do not follow a standardized protocol in breeding programs based on genetic studies. Here, we emphasise the importance of maintaining an adequate level of genetic variation and propose the implementation of standardised studbooks for jaguars in Mexico, mainly to avoid inbreeding. In addition, achieving the aims of studbook registration would provide a population genetic characterisation that could serve as a basis for ex situ conservation programmes.


Assuntos
Conservação dos Recursos Naturais , Variação Genética , Genética Populacional , Panthera/genética , Animais , Animais de Zoológico/genética , Cruzamento , Genótipo , México , Linhagem , Densidade Demográfica , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA