Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 28(17): 6839-47, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22497438

RESUMO

The adsorption of 4-mercaptopyridine on Au(111) from aqueous or ethanolic solutions is studied by different surface characterization techniques and density functional theory calculations (DFT) including van der Waals interactions. X-ray photoelectron spectroscopy and electrochemical data indicate that self-assembly from 4-mercaptopyridine-containing aqueous 0.1 M NaOH solutions for short immersion times (few minutes) results in a 4-mercaptopyridine (PyS) self-assembled monolayer (SAM) with surface coverage 0.2. Scanning tunneling microscopy images show an island-covered Au surface. The increase in the immersion time from minutes to hours results in a complete SAM degradation yielding adsorbed sulfur and a heavily pitted Au surface. Adsorbed sulfur is also the main product when the self-assembly process is made in ethanolic solutions irrespective of the immersion time. We demonstrate for the first time that a surface reaction is involved in PyS SAM decomposition in ethanol, a surface process not favored in water. DFT calculations suggest that the surface reaction takes place via disulfide formation driven by the higher stability of the S-Au(111) system. Other reactions that contribute to sulfidization are also detected and discussed.

2.
Langmuir ; 26(22): 17068-74, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20949962

RESUMO

A multitechnique study of 6-mercaptopurine (6MP) adsorption on Au(111) is presented. The molecule adsorbs on Au(111), originating short-range ordered domains and irregular nanosized aggregates with a total surface coverage by chemisorbed species smaller than those found for alkanethiol SAMs, as derived from scanning tunneling microscopy (STM) and electrochemical results. X-ray photoelectron spectroscopy (XPS) results show the presence of a thiolate bond, whereas density functional theory (DFT) data indicate strong chemisorption via a S-Au bond and additional binding to the surface via a N-Au bond. From DFT data, the positive charge on the Au topmost surface atoms is markedly smaller than that found for Au atoms in alkanethiolate SAMs. The adsorption of 6MP originates Au atom removal from step edges but no vacancy island formation at (111) terraces. The small coverage of Au islands after 6MP desorption strongly suggests the presence of only a small population of Au adatom-thiolate complexes. We propose that the absence of the Au-S interface reconstruction results from the lack of significant repulsive forces acting at the Au surface atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA