Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Malar J ; 23(1): 209, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010126

RESUMO

BACKGROUND: Malaria remains a global health challenge, particularly in Peru's Loreto region. Despite ongoing efforts, high infection rates and asymptomatic cases perpetuate transmission. The Peruvian Ministry of Health's "Zero Malaria Plan" targets elimination. This novel study combines microscopic, molecular, and serological techniques to assess transmission intensity, identify epidemiological risk factors, and characterize species-specific patterns across villages. The findings aim to inform targeted interventions and support broader malaria elimination efforts in line with the Zero Malaria Plan initiative. METHODS: A cross-sectional malaria survey was conducted in the Zungarococha community, comprising the villages Llanchama (LL), Ninarumi (NI), Puerto Almendra (PA), and Zungarococha (ZG), using microscopic, molecular, and serological techniques to evaluate malaria transmission intensity. Statistical analysis, including multivariate-adjusted analysis, seroprevalence curves, and spatial clustering analysis, were performed to assess malaria prevalence, exposure, and risk factors. RESULTS: The survey revealed a high prevalence of asymptomatic infections (6% by microscopy and 18% by PCR), indicating that molecular methods are more sensitive for detecting asymptomatic infections. Seroprevalence varied significantly between villages, reflecting the heterogeneous malaria transmission dynamics. Multivariate analysis identified age, village, and limited bed net use as significant risk factors for malaria infection and species-specific exposure. Seroprevalence curves demonstrated community-specific patterns, with Llanchama and Puerto Almendra showing the highest seroconversion rates for both Plasmodium species. CONCLUSIONS: The study highlights the diverse nature of malaria transmission in the Loreto region, particularly nothing the pronounced heterogeneity as transmission rates decline, especially in residual malaria scenarios. The use of molecular and serological techniques enhances the detection of current infections and past exposure, aiding in the identification of epidemiological risk factors. These findings underscore the importance of using molecular and serological tools to characterize malaria transmission patterns in low-endemic areas, which is crucial for planning and implementing targeted interventions and elimination strategies. This is particularly relevant for initiatives like the Zero Malaria Plan in the Peruvian Amazon.


Assuntos
Malária , Peru/epidemiologia , Estudos Transversais , Humanos , Pré-Escolar , Adulto , Adolescente , Masculino , Feminino , Criança , Pessoa de Meia-Idade , Adulto Jovem , Lactente , Idoso , Estudos Soroepidemiológicos , Prevalência , Fatores de Risco , Malária/transmissão , Malária/epidemiologia , Malária Falciparum/transmissão , Malária Falciparum/epidemiologia , Idoso de 80 Anos ou mais , Malária Vivax/transmissão , Malária Vivax/epidemiologia , Recém-Nascido
2.
Plants (Basel) ; 11(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35890427

RESUMO

The chemical composition of essential oils (EOs) from ten Peruvian Piper species (Piper coruscans, Pc; P. tuberculatum, Pt; P. casapiense, Pcs; P. obliquum, Po; P. dumosum, Pd; P. anonifolium, Pa; P. reticulatum, Pr; P. soledadense, Ps; P. sancti-felicis, Psf and P. mituense, Pm) has been studied, along with their antifungal and phytotoxic activities. These EOs contained ß-bisabolene/nerolidol (Pc), ß-bisabolene/δ-cadinene/caryophyllene (Pt), caryophyllene oxide (Pcs), bicyclogermacrene/10-epi-Elemol (Po), bicyclogermacrene/germacrene-D/apiol (Pd), caryophyllene/germacrene-D (Pa), germacrene-D (Pr), limonene/apiol (Ps), apiol (Psf), and apiol/bicyclogermacrene (Pm) as major components, and some are described here for the first time (Ps, Pcs, Pm). A composition-based dendrogram of these Piper species showed four major groups (G1: Pc and Pt, G2: Pcs, Po, Pd, Pa, and Pr, G3: Ps, and G4: Psf and Pm). The spore germination effects (Aspergillus niger, Botrytis cinerea, and Alternaria alternate) and phytotoxicity (Lolium perenne and Lactuca sativa) of these EOs were studied. Most of these Piper essential oils showed important activity against phytopathogenic fungi (except G1), especially against B. cinerea. Similarly, most of the essential oils were phytotoxic against L. perenne (except G1), with P. sancti-felicis (G4), P. casapiense (G2), and P. reticulatum (G2) being the most effective. Caryophyllene oxide, ß-caryophyllene, ß-pinene, limonene, α-humulene, and apiol were evaluated against B. cinerea, with the most effective compounds being ß-pinene, apiol, and limonene. This work demonstrates the species-dependent potential of essential oils from Peruvian Piper species as fungicidal and herbicidal agents.

3.
J Ethnopharmacol ; 264: 113262, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32818574

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the Peruvian Amazon as in the tropical countries of South America, the use of medicinal Piper species (cordoncillos) is common practice, particularly against symptoms of infection by protozoal parasites. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point of this work was a set of interviews of people living in six rural communities from the Peruvian Amazon (Alto Amazonas Province) about their uses of plants from Piper genus: one community of Amerindian native people (Shawi community) and five communities of mestizos. Infections caused by parasitic protozoa take a huge toll on public health in the Amazonian communities, who partly fight it using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help to identify new antiprotozoal compounds. AIMS OF STUDY: To record and validate the use of medicinal Piper species by rural people of Alto Amazonas Province (Peru) and annotate active compounds using a correlation study and a data mining approach. MATERIALS AND METHODS: Rural communities were interviewed about traditional medication against parasite infections with medicinal Piper species. Ethnopharmacological surveys were undertaken in five mestizo villages, namely: Nueva Arica, Shucushuyacu, Parinari, Lagunas and Esperanza, and one Shawi community (Balsapuerto village). All communities belong to the Alto Amazonas Province (Loreto region, Peru). Seventeen Piper species were collected according to their traditional use for the treatment of parasitic diseases, 35 extracts (leaves or leaves and stems) were tested in vitro on P. falciparum (3D7 chloroquine-sensitive strain and W2 chloroquine-resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Assessments were performed on HUVEC cells and RAW 264.7 macrophages. The annotation of active compounds was realized by metabolomic analysis and molecular networking approach. RESULTS: Nine extracts were active (IC50 ≤ 10 µg/mL) on 3D7 P. falciparum and only one on W2 P. falciparum, six on L. donovani (axenic and intramacrophagic amastigotes) and seven on Trypanosoma brucei gambiense. Only one extract was active on all three parasites (P. lineatum). After metabolomic analyses and annotation of compounds active on Leishmania, P. strigosum and P. pseudoarboreum were considered as potential sources of leishmanicidal compounds. CONCLUSIONS: This ethnopharmacological study and the associated in vitro bioassays corroborated the relevance of use of Piper species in the Amazonian traditional medicine, especially in Peru. A series of Piper species with few previously available phytochemical data have good antiprotozoal activity and could be a starting point for subsequent promising work. Metabolomic approach appears to be a smart, quick but still limited methodology to identify compounds with high probability of biological activity.


Assuntos
Antiprotozoários/metabolismo , Etnofarmacologia/métodos , Medicina Tradicional/métodos , Metabolômica/métodos , Piper/metabolismo , Extratos Vegetais/metabolismo , Animais , Antimaláricos/isolamento & purificação , Antimaláricos/metabolismo , Antimaláricos/uso terapêutico , Antiprotozoários/isolamento & purificação , Antiprotozoários/uso terapêutico , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/metabolismo , Mesocricetus , Camundongos , Peru/etnologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Células RAW 264.7 , Inquéritos e Questionários
4.
Nat Prod Commun ; 9(8): 1075-80, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25233577

RESUMO

Twenty-three indole alkaloids were isolated from Aspidosperma desmanthum and A. spruceanum. Alkaloids 1-4 were isolated from the leaves, 5-8 from the stem bark and 9-15 from the root bark of A. desmanthum. Alkaloids 5, 11, 16, 17 and 19 were isolated from the stem bark, 18 and 20-22 from the root bark and 23 from the flowers of A. spruceanum. Compounds 4, 14, and 15 have not been previously reported as natural products while 16 and 20 have been isolated for the first time from the genus Aspidosperma. Their structures were determined by spectroscopic techniques including 1D and 2D NMR experiments (COSY, NOESY, HSQC, HMBC). The antiparasitic activity of these compounds was tested against Trypanosoma cruzi and Leishmania infantum and their non-specific cytotoxicity on mammalian cells. The most active compounds were 10, 12, 13, and 14 from A. desmanthum, and 19, 21 and 22 from A. spruceanum. Aspidolimine (10) aspidocarpine (12) and tubotaiwine (21) showed selective activity against L. infantum.


Assuntos
Antiparasitários , Aspidosperma , Extratos Vegetais , Alcaloides de Triptamina e Secologanina , Animais , Humanos , Antiparasitários/química , Antiparasitários/isolamento & purificação , Antiparasitários/farmacologia , Aspidosperma/química , Brasil , Linhagem Celular , Células CHO , Cricetulus , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/parasitologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/isolamento & purificação , Alcaloides de Triptamina e Secologanina/farmacologia
5.
Parasitol Res ; 110(4): 1381-92, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21922239

RESUMO

Extracts (34) from eight plant species of the Peruvian Amazonia currently used in traditional Peruvian medicine, mostly as antileishmanial remedies and also as painkiller, antiseptic, antipyretic, anti-inflamatory, antiflu, astringent, diuretic, antipoison, anticancerous, antiparasitic, insecticidal, or healing agents, have been tested for their antileishmanial, antitrypanosomal, and cytotoxic activity. Plant species were selected based on interviews conducted with residents of rural areas. The different plant parts were dried, powdered, and extracted by maceration with different solvents (hexane, chloroform, and 70% ethanol-water). These extracts were tested on promastigote forms of Leishmania infantum strain PB75, epimastigote forms of Trypanosoma cruzi strain Y, and the mammalian CHO cell line. Parasite viability and nonspecific cytotoxicity were analyzed by a modified MTT colorimetric assay method. The isolation and identification of pure compounds from selected extracts were performed by column chromatography, gas chromatography mass spectrometry (GC-MS; mixtures), spectroscopic techniques [MS, infrared (IR), ultraviolet (UV)], and mono and two-dimensional (1)H and (13)C nuclear magnetic resonance (NMR; COSY, HSQC, NOESY) experiments. Chondodendron tomentosum bark and Cedrela odorata were the most active extracts against Leishmania, while C. odorata and Aristoloquia pilosa were the most active against Trypanosoma, followed by Tabebuia serratifolia, Tradescantia zebrina, and Zamia ulei. Six compounds and two mixtures were isolated from Z. ulei [cycasin (1)], T. serratifolia {mixtures 1-2, and naphthoquinones 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione (2) and 2-(1-hydroxyethyl)-4H,9H-naphtho[2,3-b]furan-4,9-dione (3)}, and C. tomentosum [chondrocurine (4); (S,S')-12-O-methyl(+)-curine (5); and cycleanine (6)]. Four compounds and the two mixtures exhibited significant activity.


Assuntos
Antiprotozoários/farmacologia , Citotoxinas/isolamento & purificação , Etnofarmacologia/métodos , Extratos Vegetais/farmacologia , Animais , Células CHO , Cricetinae , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hexanos , Leishmania infantum/efeitos dos fármacos , Medicina Tradicional , Peru , Casca de Planta/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Caules de Planta/química , Trypanosoma cruzi/efeitos dos fármacos
6.
J Agric Food Chem ; 53(6): 1921-6, 2005 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-15769114

RESUMO

Three known Cinchona alkaloids of the quinine type, quinine (1), cupreine (2), cinchonine (3), and the possible artifact cinchonine-HCl (3-HCl), along with two new ones, acetylcupreine (4) and N-ethylquinine (5), have been isolated from the bark of Remijia peruviana (Rubiaceae). Their stereochemical structures were established by high resolution NMR spectroscopy. Alkaloids 2-4 had antifeedant effects on Leptinotarsa decemlineata with varying potencies. Compound 4 was cytotoxic to both insect Sf9 and mammalian CHO cells after 48 h of incubation, while 3-HCl had stronger and selective cytotoxicity to Sf9. Quinine 1 had a moderate to low effect on Trypanosoma cruzi. Tumoral cells were also affected by these alkaloids, with 4 and 3-HCl being the most cytotoxic to all the cell lines tested. Overall, the 8R, 9S configurations, as in 3 and 3-HCl, as well as the C-6'acetylated alkaloid 4, with an 8S, 9R configuration, showed stronger biological effects.


Assuntos
Alcaloides de Cinchona/análise , Rubiaceae/química , Animais , Antineoplásicos , Células CHO , Morte Celular/efeitos dos fármacos , Alcaloides de Cinchona/química , Alcaloides de Cinchona/farmacologia , Cricetinae , Humanos , Inseticidas , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular , Casca de Planta/química , Spodoptera , Trypanosoma cruzi/efeitos dos fármacos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA