Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(2): 2769-2779, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726467

RESUMO

Faraday rotation spectroscopy (FRS) employs the Faraday effect to detect Zeeman splitting in the presence of a magnetic field. In this article, we present system design and implementation of radical sensing in a photolysis reactor using FRS. High sensitivity (100 ppb) and time resolved in situ HO2 detection is enabled with a digitally balanced acquisition scheme. Specific advantages of employing FRS for sensing in such dynamic environments are examined and rigorously compared to the more established conventional laser absorption spectroscopy (LAS). Experimental results show that FRS enables HO2 detection when LAS is deficient, and FRS compares favorably in terms of precision when LAS is applicable. The immunity of FRS to spectral interferences such as absorption of hydrocarbons and other diamagnetic species absorption and optical fringing are highlighted in comparison to LAS.

2.
J Phys Chem A ; 124(48): 9897-9914, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33174431

RESUMO

The accelerating chemical effect of ozone addition on the oxidation chemistry of methyl hexanoate [CH3(CH2)4C(═O)OCH3] was investigated over a temperature range from 460 to 940 K. Using an externally heated jet-stirred reactor at p = 700 Torr (residence time τ = 1.3 s, stoichiometry φ = 0.5, 80% argon dilution), we explored the relevant chemical pathways by employing molecular-beam mass spectrometry with electron and single-photon ionization to trace the temperature dependencies of key intermediates, including many hydroperoxides. In the absence of ozone, reactivity is observed in the so-called low-temperature chemistry (LTC) regime between 550 and 700 K, which is governed by hydroperoxides formed from sequential O2 addition and isomerization reactions. At temperatures above 700 K, we observed the negative temperature coefficient (NTC) regime, in which the reactivity decreases with increasing temperatures, until near 800 K, where the reactivity increases again. Upon addition of ozone (1000 ppm), the overall reactivity of the system is dramatically changed due to the time scale of ozone decomposition in comparison to fuel oxidation time scales of the mixtures at different temperatures. While the LTC regime seems to be only slightly affected by the addition of ozone with respect to the identity and quantity of the observed intermediates, we observed an increased reactivity in the intermediate NTC temperature range. Furthermore, we observed experimental evidence for an additional oxidation regime in the range near 500 K, herein referred to as the extreme low-temperature chemistry (ELTC) regime. Experimental evidence and theoretical rate constant calculations indicate that this ELTC regime is likely to be initiated by H abstraction from methyl hexanoate via O atoms, which originate from thermal O3 decomposition. The theoretical calculations show that the rate constants for methyl ester initiation via abstraction by O atoms increase dramatically with the size of the methyl ester, suggesting that ELTC is likely not important for the smaller methyl esters. Experimental evidence is provided indicating that, similar to the LTC regime, the chemistry in the ELTC regime is dominated by hydroperoxide chemistry. However, mass spectra recorded at various reactor temperatures and at different photon energies provide experimental evidence of some differences in chemical species between the ELTC and the LTC temperature ranges.

3.
Phys Chem Chem Phys ; 21(14): 7341-7357, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30896721

RESUMO

The reaction network of the simplest Criegee intermediate (CI) CH2OO has been studied experimentally during the ozonolysis of ethylene. The results provide valuable information about plasma- and ozone-assisted combustion processes and atmospheric aerosol formation. A network of CI reactions was identified, which can be described best by the sequential addition of CI with ethylene, water, formic acid, and other molecules containing hydroxy, aldehyde, and hydroperoxy functional groups. Species resulting from as many as four sequential CI addition reactions were observed, and these species are highly oxygenated oligomers that are known components of secondary organic aerosols in the atmosphere. Insights into these reaction pathways were obtained from a near-atmospheric pressure jet-stirred reactor coupled to a high-resolution molecular-beam mass spectrometer. The mass spectrometer employs single-photon ionization with synchrotron-generated, tunable vacuum-ultraviolet radiation to minimize fragmentation via near-threshold ionization and to observe mass-selected photoionization efficiency (PIE) curves. Species identification is supported by comparison of the mass-selected, experimentally observed photo-ionization thresholds with theoretical calculations for the ionization energies. A variety of multi-functional peroxide species are identified, including hydroxymethyl hydroperoxide (HOCH2OOH), hydroperoxymethyl formate (HOOCH2OCHO), methoxymethyl hydroperoxide (CH3OCH2OOH), ethoxymethyl hydroperoxide (C2H5OCH2OOH), 2-hydroxyethyl hydroperoxide (HOC2H4OOH), dihydroperoxy methane (HOOCH2OOH), and 1-hydroperoxypropan-2-one [CH3C([double bond, length as m-dash]O)CH2OOH]. A semi-quantitative analysis of the signal intensities as a function of successive CI additions and temperature provides mechanistic insights and valuable information for future modeling work of the associated energy conversion processes and atmospheric chemistry. This work provides further evidence that the CI is a key intermediate in the formation of oligomeric species via the formation of hydroperoxides.

4.
J Phys Chem A ; 122(43): 8674-8685, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30293425

RESUMO

Ethylene oxidation initiated by ozone addition (ozonolysis) is carried out in a jet-stirred reactor from 300 to 1000 K to explore the kinetic pathways relevant to low-temperature oxidation. The temperature dependencies of species' mole fractions are quantified using molecular-beam mass spectrometry with electron ionization and single-photon ionization employing tunable synchrotron-generated vacuum-ultraviolet radiation. Upon ozone addition, significant ethylene oxidation is found in the low-temperature regime from 300 to 600 K. Here, we provide new insights into the ethylene ozonolysis reaction network via identification and quantification of previously elusive intermediates by combining experimental photoionization energy scans and ab initio threshold energy calculations for isomer identification. Specifically, the C2H4 + O3 adduct C2H4O3 is identified as a keto-hydroperoxide (hydroperoxy-acetaldehyde, HOOCH2CHO) based on the calculated and experimentally observed ionization energy of 9.80 (±0.05) eV. Quantification using a photoionization cross-section of 5 Mb at 10.5 eV results in 5 ppm at atmospheric conditions, which decreases monotonically with temperature until 550 K. Other hydroperoxide species that contribute in larger amounts to the low-temperature oxidation of C2H4, like H2O2, CH3OOH, and C2H5OOH, are identified and their temperature-dependent mole fractions are reported. The experimental evidence for additional oxygenated species such as methanol, ketene, acetaldehyde, and hydroxy-acetaldehyde suggest multiple active oxidation routes. This experimental investigation closes the gap between ozonolysis at atmospheric and elevated temperature conditions and provides a database for future modeling.

5.
Philos Trans A Math Phys Eng Sci ; 373(2048)2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26170433

RESUMO

Speciation and temperature measurements of methane oxidation during a nanosecond repetitively pulsed discharge in a low-temperature flow reactor have been performed. Measurements of temperature and formaldehyde during a burst of pulses were made on a time-dependent basis using tunable diode laser absorption spectroscopy, and measurements of all other major stable species were made downstream of a continuously pulsed discharge using gas chromatography. The major species for a stoichiometric methane/oxygen/helium mixture with 75% dilution are H(2)O, CO, CO(2), H(2), CH(2)O, CH(3)OH, C(2)H(6), C(2)H(4) and C(2)H(2). A modelling tool to simulate homogeneous plasma combustion kinetics is assembled by combining the ZDPlasKin and CHEMKIN codes. In addition, a kinetic model for plasma-assisted combustion (HP-Mech/plasma) of methane, oxygen and helium mixtures has been assembled to simulate the measurements. Predictions can accurately capture reactant consumption as well as production of the major product species. However, significant disagreement is found for minor species, particularly CH(2)O and CH(3)OH. Further analysis revealed that the plasma-activated low-temperature oxidation pathways, particularly those involving CH(3)O(2) radical reactions and methane reactions with O((1)D), are responsible for this disagreement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA