RESUMO
Gait initiation is the task commonly used to investigate the anticipatory postural adjustments necessary to begin a new gait cycle from the standing position. In this study, we analyzed whether and how foot-floor interface characteristics influence the gait initiation process. For this purpose, 25 undergraduate students were evaluated while performing a gait initiation task in three experimental conditions: barefoot on a hard surface (barefoot condition), barefoot on a soft surface (foam condition), and shod on a hard surface (shod condition). Two force plates were used to acquire ground reaction forces and moments for each foot separately. A statistical parametric mapping (SPM) analysis was performed in COP time series. We compared the anterior-posterior (AP) and medial-lateral (ML) resultant center of pressure (COP) paths and average velocities, the force peaks under the right and left foot, and the COP integral x force impulse for three different phases: the anticipatory postural adjustment (APA) phase (Phase 1), the swing-foot unloading phase (Phase 2), and the support-foot unloading phase (Phase 3). In Phase 1, significantly smaller ML COP paths and velocities were found for the shod condition compared to the barefoot and foam conditions. Significantly smaller ML COP paths were also found in Phase 2 for the shod condition compared to the barefoot and foam conditions. In Phase 3, increased AP COP velocities were found for the shod condition compared to the barefoot and foam conditions. SPM analysis revealed significant differences for vector COP time series in the shod condition compared to the barefoot and foam conditions. The foam condition limited the impulse-generating capacity of COP shift and produced smaller ML force peaks, resulting in limitations to body-weight transfer from the swing to the support foot. The results suggest that footwear and a soft surface affect COP and impose certain features of gait initiation, especially in the ML direction of Phase 1.
Assuntos
Pé/fisiologia , Marcha/fisiologia , Sapatos/classificação , Adolescente , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pressão , Estudantes , Adulto JovemRESUMO
BACKGROUND: Nowadays, trades and research have become closely related between different countries and anthropometric data are important for the development in global markets. The appropriate use of anthropometry may improve wellbeing, health, comfort and safety especially for footwear design. For children a proper fit of footwear is very important, not constraining foot growth and allowing a normal development. The aim of this study was to compare the anthropometric characteristics of German and Brazilian children's feet from 3 to 10 years of age. METHODS: We compared five indirect measures of two databases of children's feet. Forefoot, midfoot and rearfoot widths were measured in static footprints and the Chippaux-Smirak and Staheli indices of the longitudinal arch were calculated. RESULTS: Brazilian children showed a significantly narrower forefoot from 5 to 10 years, wider rearfoot from 3 to 4 years, wider midfoot for 4 year-olds and narrower midfoot for 10 year-old children. Nevertheless, the Chippaux-Smirak and Staheli indices showed no group differences. The only exception was for 4 year-old Brazilian children who showed a higher Chippaux-Smirak index compared to German children (48.4 ± 17.7%; 42.1 ± 13.8%). CONCLUSIONS: Our study revealed anthropometric differences in absolute forefoot and rearfoot widths of German and Brazilian children, but a similar longitudinal arch development. At 4 years of age, Brazilian children present a foot anthropometry similar to the 3 year-olds and develop the plantar longitudinal arch from 4 to 5 years more rapidly when compared to German children.
Assuntos
Antropometria , Pé/anatomia & histologia , Índice de Massa Corporal , Brasil , Criança , Pré-Escolar , Clima , Etnicidade , Feminino , Alemanha , Humanos , Estilo de Vida , Masculino , Fatores SocioeconômicosRESUMO
The purpose of this study was to describe the effects of lower limb positioning and shoe conditions on stability levels of selected single leg ballet poses performed in demi-pointe position. Fourteen female non-professional ballet dancers (mean age of 18.4±2.8 years and mean body mass index of 21.5±2.8kg/m(2)) who had practiced ballet for at least seven years, without any musculoskeletal impairment volunteered to participate in this study. A capacitive pressure platform allowed for the assessment of center of pressure variables related to the execution of three single leg ballet poses in demi pointé position: attitude devant, attitude derriére, and attitude a la second. Peak pressures, contact areas, COP oscillation areas, anterior-posterior and medio-lateral COP oscillations and velocities were compared between two shoe conditions (barefoot versus slippers) and among the different poses. Barefoot performances produced more stable poses with significantly higher plantar contact areas, smaller COP oscillation areas and smaller anterior-posterior COP oscillations. COP oscillation areas, anterior-posterior COP oscillations and medio-lateral COP velocities indicated that attitude a la second is the least challenging and attitude derriére the most challenging pose.